题目内容

已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角为(  )
A.90°B.45°C.60°D.30°

精英家教网
设G为AD的中点,连接GF,GE,
则GF,GE分别为△ABD,△ACD的中线.
∴GFAB,且GF=
1
2
AB=1,GECD,且GE=
1
2
CD=2,
则EF与CD所成角的度数等于EF与GE所成角的度数
又EF⊥AB,GFAB,
∴EF⊥GF
则△GEF为直角三角形,GF=1,GE=2,∠GFE=90°
∴在直角△GEF中,sin∠GEF=
1
2

∴∠GEF=30°.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网