题目内容
设首项为a,公差为d的等差数列前n项的和为An,又首项为a,公比为r的等比数列前n项和为Gn,其中a≠0,|r|<1.令Sn=G1+G2+…+Gn,若有| lim |
| n→∞ |
| An |
| n |
分析:等比和等差数列的求和公式分别表示出An和Gn,进而表示出
-Sn,最后求出其极限即可.
| An |
| n |
解答:解:由题意知Gn=
∴Sn=
•[a(r +r2+r3…+rn)-(a+a+a…+a)]
=
(
-na)
=
[rn-r-n(-1+r)]
An=na+
•d
∴
-Sn=
[na+
•d]-
[rn-r-n(-1+r)]=a+
•d-
×(rn-r)-
∵
(
-Sn)=a,a≠0,|r|<1
所以:
+
=0且
×r+a-
=a,即
×r-
=0
∴
×r+
=0,整理得2r-1=0,解得r=
| a(1-rn) |
| 1-r |
∴Sn=
| 1 |
| -1+r |
=
| 1 |
| -1+r |
| ar(1-rn) |
| 1-r |
=
| a |
| (-1+r)2 |
An=na+
| n(n-1) |
| 2 |
∴
| An |
| n |
| 1 |
| n |
| n(n-1) |
| 2 |
| a |
| (-1+r)2 |
| n-1 |
| 2 |
| a |
| (-1+r)2 |
| an |
| 1-r |
∵
| lim |
| n→∞ |
| An |
| n |
所以:
| d |
| 2 |
| a |
| r-1 |
| a |
| (1-r)2 |
| d |
| 2 |
| a |
| (1-r)2 |
| d |
| 2 |
∴
| a |
| (1-r)2 |
| a |
| r-1 |
| 1 |
| 2 |
点评:本题主要考查了等比数列的求和问题.属基础题.
练习册系列答案
相关题目