题目内容

设首项为a,公差为d的等差数列前n项的和为An,又首项为a,公比为r的等比数列前n项和为Gn,其中a≠0,|r|<1.令Sn=G1+G2+…+Gn,若有
lim
n→∞
(
An
n
-Sn)
=a,求r的值.
分析:等比和等差数列的求和公式分别表示出An和Gn,进而表示出
An
n
-Sn
,最后求出其极限即可.
解答:解:由题意知Gn=
a(1-rn)
1-r

∴Sn=
1
-1+r
•[a(r +r2+r3…+rn)-(a+a+a…+a)]

=
1
-1+r
(
ar(1-rn)
1-r
-na)

=
a
(-1+r)2
[rn-r-n(-1+r)]
An=na+
n(n-1)
2
•d

An
n
-Sn
=
1
n
[na+
n(n-1)
2
•d
]-
a
(-1+r)2
[rn-r-n(-1+r)]=a+
n-1
2
•d
-
a
(-1+r)2
×(rn-r)-
an
1-r

lim
n→∞
(
An
n
-Sn)
=a,a≠0,|r|<1
所以:
d
2
+
a
r-1
=0且
a
(1-r)2
×r+a-
d
2
=a,即
a
(1-r)2
×r-
d
2
=0
a
(1-r)2
×r+
a
r-1
=0,整理得2r-1=0,解得r=
1
2
点评:本题主要考查了等比数列的求和问题.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网