题目内容
在区间[10,20]内的所有实数中,随机取一个实数a,则a<15的概率是________.
分析:在区间[10,20]内的所有实数不可数,属于几何概型,我们分别计算出区间[10,20]的长度,区间[10,15)的长度,代入几何概型概率计算公式,即可得到答案.
解答:由于试验的全部结果构成的区域长度为20-10=10,
构成该事件的区域长度为15-10=5,
所以概率为
故答案为:
点评:本题主要考查几何概型的概率计算,其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键,属于基础题.
练习册系列答案
相关题目
| 分组 | 频数 | 频率 |
| [10,15) | 10 | 0.25 |
| [15,20) | 25 | a |
| [20,25) | m | p |
| [25,30) | 2 | 0.05 |
| 合计 | M | 1 |
(Ⅱ)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.
编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50分的概率.
| 运动员编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
| 得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
| 运动员编号 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 |
| 得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
| 区间 | [10,20) | [20,30) | [30,40] |
| 人数 |
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50分的概率.