ÌâÄ¿ÄÚÈÝ
2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£®£¨¢ñ£©½«Ö±ÏßlµÄ²ÎÊý·½³ÌºÍÔ²CµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlºÍÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬ÇóABµÄ³¤£®
·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊýt£¬°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬
ÀûÓü«×ø±ê¹«Ê½£¬°ÑÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Çó³öÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd£¬ÀûÓù´¹É¶¨ÀíÇó³öÖ±Ïß±»Ô²½ØµÃµÄÏÒ³¤£®
½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$£¬ÏûÈ¥²ÎÊýt£¬
µÃÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪ£º2x-y+1=0£»¡£¨2·Ö£©
ÓɦÑ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬
µÃ¦Ñ=2$\sqrt{2}$£¨sin¦Ècos$\frac{¦Ð}{4}$+cos¦Èsin$\frac{¦Ð}{4}$£©=2sin¦È+2cos¦È£¬
¡à¦Ñ2=2¦Ñsin¦È+2¦Ñcos¦È£¬
»¯ÎªÆÕͨ·½³ÌµÃ£¬
ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2=2y+2x£¬
¼´£¨x-1£©2+£¨y-1£©2=2£»¡£¨4·Ö£©
£¨¢ò£©Ô²ÐÄC£¨1£¬1£©µ½Ö±ÏßlµÄ¾àÀëΪ
d=$\frac{|2¡Á1-1+1|}{\sqrt{{2}^{2}{+1}^{2}}}$=$\frac{2}{\sqrt{5}}$£¬
ÇÒÔ²µÄ°ë¾¶ÎªR=$\sqrt{2}$£¬
Ö±Ïß±»Ô²C½ØµÃµÄÏÒ³¤
|AB|=2$\sqrt{{R}^{2}{-d}^{2}}$=2$\sqrt{{£¨\sqrt{2}£©}^{2}{-£¨\frac{2}{\sqrt{5}}£©}^{2}}$=$\frac{2\sqrt{30}}{5}$£®¡£¨7·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌÓë¼«×ø±êµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖ±ÏßÓëÔ²µÄ·½³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | $£¨4£¬\frac{¦Ð}{3}£©$ | B£® | £¨4£¬$\frac{4¦Ð}{3}$£© | C£® | £¨-4£¬-$\frac{2¦Ð}{3}$£© | D£® | $£¨4£¬\frac{2¦Ð}{3}£©$ |
| A£® | £¨0£¬3£© | B£® | £¨0£¬1£©¡È£¨1£¬3£© | C£® | £¨0£¬1£© | D£® | £¨-¡Þ£¬1£©¡È£¨3£¬+¡Þ£© |
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{2¦Ð}{3}$ |