题目内容
已知| x |
| ||
| 2 |
| 3 |
(1)求数列an的第n+1项;
(2)若
| bn |
| 1 |
| an+1 |
| 1 |
| an |
分析:(1)有
,
,
(x≥0)成等差数列,利用等差数列定义得到f(x)的函数解析式,再利用Sn=f(Sn-1)得到数列an的关于前n项和式子,在有前n项和求出数列的第n+1项;
(2)由于
是
的等比中项,所以可以利用等比中项的定义得到数列bn的通项公式,在利用裂项相消法可以求{bn}的前n项和Tn.
| x |
| ||
| 2 |
| 3 |
(2)由于
| bn |
| 1 |
| an+1 |
| 1 |
| an |
解答:解:(1)∵
,
,
(x≥0)成等差数列,
∴
×2=
+
∴f(x)=(
+
)2∵Sn=f(Sn-1)(n≥2),∴Sn=f(Sn-1)=(
+
2
∴
=
+
,
-
=
∴{
}是以
为公差的等差数列.
∵a1=3∴S1=3,∴
=
+(n-1)
=
n,
∴Sn=3n2(n∈N+)
∴an+1=Sn+1-Sn=3(n+1)2-3n2=6n+3;
(2)∵数列
是
,
的等比中项,
∴(
)2=
×
∴bn=
=
=
(
-
)
Tn=b1+b2+…+bn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)
| x |
| ||
| 2 |
| 3 |
∴
| ||
| 2 |
| x |
| 3 |
| x |
| 3 |
| Sn-1 |
| 3) |
∴
| Sn |
| Sn-1 |
| 3 |
| Sn |
| Sn-1 |
| 3 |
∴{
| Sn |
| 3 |
∵a1=3∴S1=3,∴
| Sn |
| S1 |
| 3 |
| 3 |
∴Sn=3n2(n∈N+)
∴an+1=Sn+1-Sn=3(n+1)2-3n2=6n+3;
(2)∵数列
| bn |
| 1 |
| an+1 |
| 1 |
| an |
∴(
| bn |
| 1 |
| an+1 |
| 1 |
| an |
∴bn=
| 1 |
| an+1an |
| 1 |
| 3(2n+1)×3(2n-1) |
| 1 |
| 18 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
Tn=b1+b2+…+bn=
| 1 |
| 18 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 18 |
| 1 |
| 2n+1 |
点评:此题考查了已知数列的前n项和求通项,等差数列的定义及等比中项,还考查了裂项相消法求数列的前n项的和.
练习册系列答案
相关题目