题目内容
数列{an}满足
=2(n∈N*),且a2=3,则an=______.
| an+1 |
| an |
∵
=2(n∈N*),且a2=3,,
∴
=2,a1=
,
所以an=
×2n-1.
故答案为:
×2n-1.
| an+1 |
| an |
∴
| 3 |
| a1 |
| 3 |
| 2 |
所以an=
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
练习册系列答案
相关题目
题目内容
| an+1 |
| an |
| an+1 |
| an |
| 3 |
| a1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |