题目内容
(2013•怀化二模)已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ) 求证数列{
}是等差数列并求{an}的通项公式;
(Ⅱ) 设bn=anan+1,求证:b1+b2+…+bn<
.
(Ⅰ) 求证数列{
| 1 |
| an |
(Ⅱ) 设bn=anan+1,求证:b1+b2+…+bn<
| 1 |
| 2 |
分析:(Ⅰ)先确定数列{
}是以1为首项,2为公差的等差数列,可求{an}的通项公式;
(Ⅱ)确定数列{bn}的通项,利用裂项法求数列的和,再用放缩法,即可证得结论.
| 1 |
| an |
(Ⅱ)确定数列{bn}的通项,利用裂项法求数列的和,再用放缩法,即可证得结论.
解答:证明:(Ⅰ)an-an-1+2anan-1=0两边同除以anan-1得:
-
=2
所以数列{
}是以1为首项,2为公差的等差数列…(3分)
于是
=2n-1,an=
,(n∈N*)…(6分)
(Ⅱ)由(Ⅰ),bn=
则
b1+b2+…+bn=
+
+…+
=
(1-
+
-
+…+
-
)=
(1-
)<
…(12分)
| 1 |
| an |
| 1 |
| an-1 |
所以数列{
| 1 |
| an |
于是
| 1 |
| an |
| 1 |
| 2n-1 |
(Ⅱ)由(Ⅰ),bn=
| 1 |
| (2n-1)(2n+1) |
b1+b2+…+bn=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
点评:本题考查数列的通项与求和,考查裂项法的运用,确定数列的通项是关键.
练习册系列答案
相关题目