题目内容

已知f(x)=
3
sinωx-2sin2
ωx
2
(ω>0)的最小正周期为3π.
(Ⅰ)当x∈[
π
2
4
]时,求函数f(x)的最小值;
(Ⅱ)在△ABC,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.
分析:先利用二倍角公式的变形形式及辅助角公式把函数化简为y=2sin(ωx+
π
6
)-1,根据周期公式可求ω,进而求f(x)
(I)由x的范围求出
2
3
x+
π
6
的范围,结合正弦函数的图象及性质可求
(II)由f(C)=2sin(
2C
3
+
π
6
)-1
及f(C)=1可得,sin(
2C
3
+
π
6
)=1
,结合已知C的范围可求C及 A+B,代入2sin2B=cosB+cos(A-C),整理可得关于 sinA的方程,解方程可得
解答:解:f(x)=
3
sin(?x)-2•
1-cos(?x)
2
=
3
sin(?x)+cos(?x)-1
=2sin(?x+
π
6
)-1

依题意函数f(x)的最小正周期为3π,即
?
=3π
,解得?=
2
3

所以f(x)=2sin(
2
3
x+
π
6
)-1

(Ⅰ)由
π
2
≤x≤
4
π
2
2
3
x+
π
6
3

所以,当sin(
2
3
x+
π
6
)=
3
2
时,f(x)最小值=2×
3
2
-1=
3
-1

(Ⅱ)由f(C)=2sin(
2C
3
+
π
6
)-1
及f(C)=1,得sin(
2C
3
+
π
6
)=1

π
2
2
3
C+
π
6
3
,所以
2
3
C+
π
6
=
π
2
,解得C=
π
2

在Rt△ABC中, A+B=
π
2
,2sin2B=cosB+cos(A-C)2cos2A-sinA-sinA=0,
∴sin2A+sinA-1=0,解得sinA=
-1±
5
2
∵0<sinA<1, sinA=
5
-1
2
点评:以三角形为载体,综合考查了二倍角公式的变形形式,辅助角公式在三角函数化简中的应用,考查了三角函数的性质(周期、单调区间、最值取得的条件)时常把ωx+φ作为一个整体.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网