题目内容
若a>0,b>0,且a+b=c,求证:(1)当r>1时,ar+br<cr;(2)当r<1时,ar+br>cr.
分析:
=(
)r+(
)r,由此能够证明:(1)当r>1时,ar+br<cr;(2)当r<1时,ar+br>cr.
| ar+br |
| cr |
| a |
| c |
| b |
| c |
解答:证明:
=(
)r+(
)r,其中0<
<1,0<
<1.
(1)当r>1时,(
)r+(
)r<
+
=1,所以ar+br<cr;
(2)当r<1时,(
)r+(
)r>
+
=1,所以ar+br>cr.
| ar+br |
| cr |
| a |
| c |
| b |
| c |
| a |
| c |
| b |
| c |
(1)当r>1时,(
| a |
| c |
| b |
| c |
| a |
| c |
| b |
| c |
(2)当r<1时,(
| a |
| c |
| b |
| c |
| a |
| c |
| b |
| c |
点评:本题考查不等式的证明,解题时要注意公式的灵活运用.
练习册系列答案
相关题目
若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( )
| A、2 | B、3 | C、6 | D、9 |