19.为探究大气CO2浓度上升及紫外线(UV)辐射强度增加对农业生产的影响,研究人员人工模拟一定量的UV辐射和加倍的CO2浓度处理番茄幼苗,直至果实成熟,测定了番茄株高及光合作用相关生理指标,结果见下表.请分析回答:
(1)光合作用中,CO2在 中与C5(RuBP)结合,形成的C3被还原成三碳糖.这样光能就转化为糖分子中的化学能.
(2)据表分析,C组光合速率明显高于对照组,其原因一方面是由于CO2浓度倍增,加快了碳反应的速率;另一方面是由于叶绿素含量增加,使光反应速率也加快.D组光合速率与无显著差异对照相比,说明CO2 浓度倍增对光合作用的影响可以降低(抵消)UV辐射增强对光合作用的影响.
(3)由表可知,CO2 浓度倍增可以促进番茄植株生长.有研究者认为,这可能与CO2参与了植物生长素的合成启动有关.要检验此假设,还需要测定A、C组植株中生长素的含量.若检测结果是C组生长素含量高于A组,则支持假设.
| 分组及实验处理 | 株高(cm) | 叶绿素含量 (mgg-1) | 光合速率 (μmolm-2s-1) | |||||
| 15天 | 30天 | 45天 | 15天 | 30天 | 45天 | |||
| A | 对照(自然条件) | 21.5 | 35.2 | 54.5 | 1.65 | 2.0 | 2.0 | 8.86 |
| B | UV照射 | 21.1 | 31.6 | 48.3 | 1.5 | 1.8 | 1.8 | 6.52 |
| C | CO2浓度倍增 | 21.9 | 38.3 | 61.2 | 1.75 | 2.4 | 2.45 | 14.28 |
| D | UV照射和 CO2浓度倍增 | 21.5 | 35.9 | 55.7 | 1.55 | 1.95 | 2.25 | 9.02 |
(2)据表分析,C组光合速率明显高于对照组,其原因一方面是由于CO2浓度倍增,加快了碳反应的速率;另一方面是由于叶绿素含量增加,使光反应速率也加快.D组光合速率与无显著差异对照相比,说明CO2 浓度倍增对光合作用的影响可以降低(抵消)UV辐射增强对光合作用的影响.
(3)由表可知,CO2 浓度倍增可以促进番茄植株生长.有研究者认为,这可能与CO2参与了植物生长素的合成启动有关.要检验此假设,还需要测定A、C组植株中生长素的含量.若检测结果是C组生长素含量高于A组,则支持假设.
13.如图①、②、③、④表示四株豌豆体细胞中的控制种子的圆粒与皱粒(A、a)及黄色与绿色(B、b)两对基因及其在染色体上的位置,下列叙述中不正确的是( )

0 135317 135325 135331 135335 135341 135343 135347 135353 135355 135361 135367 135371 135373 135377 135383 135385 135391 135395 135397 135401 135403 135407 135409 135411 135412 135413 135415 135416 135417 135419 135421 135425 135427 135431 135433 135437 135443 135445 135451 135455 135457 135461 135467 135473 135475 135481 135485 135487 135493 135497 135503 135511 170175
| A. | ①、②杂交后代的性状分离之比是9:3:3:1 | |
| B. | ①、③杂交后代的基因型之比是1:1:1:1 | |
| C. | ③、④杂交后代有两种基因型、两种表现型,比例都是1:1 | |
| D. | 四株豌豆自交都能产生基因型为AAbb的后代 |