题目内容
13.电离平衡常数是衡量弱电解质电离程度的量.已知如表数据(25℃时)| 化学式 | 电离平衡常数 |
| HCN | K=4.9×10-10 |
| CH3COOH | K=1.8×10-5 |
| H2CO3 | K1=4.4×10-7,K2=4.7×10-11 |
(2)25℃时,向NaCN溶液中通入少量CO2,所发生反应的化学方程式为NaCN+H2O+CO2=HCN+NaHCO3.
(3)现有浓度为0.02mol/L的HCN与0.01mol/L NaOH等体积混合后,测得C(Na+)>C(CN-),下列关系正确的是BD.
A.C(H+)>C(OH-) B.C(H+)<C(OH-)
C.C(H+)+C(HCN)=C(OH-) D.C(HCN)+C(CN-)=0.01mol/L
(4)浓的Al2(SO4)3溶液和浓的小苏打(NaHCO3)溶液混合可用于灭火,请用离子反应方程式表示灭火的原理Al3++3HCO3-═Al(OH)3↓+3CO2↑.
(5)已知NaHC2O4水溶液显酸性,请写出该溶液中各离子浓度的大小c(Na+)>c(HC2O4-)>c(H+)>c(C2O42-)>c(OH-);质子守恒表达式c(OH-)=c(H+)-c(C2O42-)+c(H2C2O4).
A.c(OH-)=c(H+)-c(C2O42-)+c(H2C2O4)
B.c(OH-)+2c(C2O42-)+c(HC2O4-)=c(H+)+c(H2C2O4)+c(Na+)
(6)H2C2O4溶液和KMnO4酸性溶液可发生反应:H2C2O4+MnO4-+H+→CO2+Mn2++H2O,若将该反应设计成原电池,请写出原电池的负极的电极反应H2C2O4-2e=2CO2+2H+,反应中每生成标况下4.48LCO2气体,外电路中通过的电子的物质的量为0.2mol.
分析 (1)根据酸的电离常数进行分析判断,电离常数越大,对应盐的水解程度越小,溶液的pH越小;
(2)根据电离常数大小分析反应的生成物;
(3)将0.02mol/L的HCN与0.01mol/L 的NaOH溶液等体积混合,溶液中的溶质是等物质的量浓度的NaCN、HCN,已知混合溶液中c(CN-)<c(Na+),根据电荷守恒可知c(H+)<c(OH-),混合溶液呈碱性,说明CN-的水解程度大于HCN的电离程度,据此进行判断;
(4)铝离子与碳酸氢根离子发生双水解反应生成二氧化碳气体和氢氧化铝沉淀;
(5)根据草酸氢铵溶液显示酸性及电荷守恒判断溶液中各离子浓度大小;根据质子守恒写出草酸氢钠溶液中的质子守恒表达式;
(6)负极失去电子发生氧化反应,该反应中草酸失去电子生成二氧化碳气体,据此写出负极的电极反应式;根据化合价变化计算出生成4.48L二氧化碳转移的电子的物质的量.
解答 解:(1)根据图表数据分析,电离常数:醋酸>HCN>碳酸氢根离子,所以等浓度的NaCN溶液、Na2CO3溶液、CH3COONa溶液水解程度为:Na2CO3溶液>NaCN溶液>CH3COONa溶液,故溶液的pH为:Na2CO3溶液>NaCN溶液>CH3COONa溶液;故答案为:Na2CO3溶液>NaCN溶液>CH3COONa溶液;
(2)向NaCN溶液中通入少量CO2,由于酸性:H2CO3>HCN>HCO3-,故反应生成HCN和碳酸氢钠,不能生成二氧化碳,故反应的化学方程式为NaCN+H2O+CO2=HCN+NaHCO3,故答案为:NaCN+H2O+CO2=HCN+NaHCO3;
(3)将0.02mol/L的HCN与0.01mol/L 的NaOH溶液等体积混合,溶液中的溶质是物质的量浓度都为0.005mol•L-1的NaCN、HCN,测得c(Na+)>c(CN-),根据电荷守恒可知:c(H+)<c(OH-),溶液呈碱性,所以HCN的浓度为0.005mol•L-1,CN-的浓度小于0.005mol•L-1,
A.根据分析可知,溶液呈碱性,c(H+)<c(OH-),故A错误;
B.混合液呈碱性,则c(H+)<c(OH-),故B正确;
C.氢氧根离子浓度较小,c(CN-)远远大于c(OH-),故C错误;
D.根据物料守恒可知:c(HCN)+c(CN-)=0.01mol/L,故D正确;
故答案为:BD;
(4)铝离子与碳酸氢根离子混合发生双水解生成氢氧化铝沉淀和二氧化碳气体,反应的离子方程式为:Al3++3HCO3-═Al(OH)3↓+3CO2↑,
故答案为:Al3++3HCO3-═Al(OH)3↓+3CO2↑;
(5)草酸氢钠溶液显示酸性,则HC2O4-的电离程度大于其水解程度,所以c(C2O42-)>c(H2C2O4),由于氢离子来自水的电离和HC2O4-的电离,则c(H+)>c(C2O42-),HC2O4-的水解程度较小,则c(HC2O4-)>c(C2O42-),所以溶液中各离子浓度大小为:c(Na+)>c(HC2O4-)>c(H+)>c(C2O42-)>c(OH-);
草酸氢钠溶液中存在的质子守恒为:c(OH-)=c(H+)-c (C2O42-)+c(H2C2O4),
故答案为:c(Na+)>c(HC2O4-)>c(H+)>c(C2O42-)>c(OH-);c(OH-)=c(H+)-c (C2O42-)+c(H2C2O4);
(6)H2C2O4溶液和KMnO4酸性溶液可发生反应:H2C2O4+MnO4-+H+→CO2+Mn2++H2O,若将该反应设计成原电池,负极失去电子发生氧化反应,该反应中草酸失去电子被氧化生成二氧化碳,则负极的电极反应式为:H2C2O4-2e=2CO2+2H+;
标准状况下4.48L二氧化碳的物质的量为:$\frac{44.8L}{22.4L/mol}$=0.2mol,H2C2O4中C元素的化合价为+3价,二氧化碳分子中C的化合价为+4价,则生成0.2mol二氧化碳转移的电子的物质的量为:0.2mol×(4-3)=0.2mol,
故答案为:H2C2O4-2e=2CO2+2H+; 0.2.
点评 本题考查了弱电解质的电离及其影响、离子浓度大小比较、原电池工作原理的应用等知识,题目难度中等,明确弱电解质的电离平衡及其影响因素、原电池工作原理为解答关键,试题知识点较多、综合性较强,充分考查了学生的分析、理解能力及灵活应用能力.
| A. | B. | C. | CH3-CH═CH2烯烃 | D. | 醇 |
| A. | 4.6 g NO2与N2O4的混合气体中所含氮原子数为0.1NA | |
| B. | 常温常压下1.6 g甲烷所含共用电子对数为0.1NA | |
| C. | 标准状况下,6.72 L CO2与足量NO2反应转移电子数为0.6NA | |
| D. | 50 mL 98%浓硫酸(密度为1.84 g•cm-3)与足量铜共热,转移的电子数为 0.92NA |
| A. | 容器内压强P:P甲=P丙>2P乙 | |
| B. | SO2的质量m:m甲=m丙>2m乙 | |
| C. | c(SO2)与c(O2)之比k:k甲=k丙=2k乙 | |
| D. | 甲乙中SO2的转化率分别为ɑ甲、ɑ乙,丙中SO3的转化率为ɑ丙:ɑ甲>ɑ乙,ɑ甲+ɑ丙=1 |
(1)雾霾天气与氮的氧化物排放有关.汽车尾气中的NO(g)和CO(g)在一定温度和催化剂的条件下可发生反应.
①已知部分化学键的键能如下
| 分子式/结构式 | NO/N≡O | CO/C≡O | CO2/O=C=O | N2/N≡N |
| 化学键 | N≡O | C≡O | C=O | N≡N |
| 键能(KJ/mol) | 632 | 1072 | 750 | 946 |
2NO(g)+2CO( g)?N2(g)+2CO2(g)△H=-538kJ/mol
②若反应2NO(g)+2CO(g)?N2(g)+2CO2(g)在恒温、恒容的密闭体系中进行,并在t1时刻达到平衡状态,则下列示意图不符合题意的是A(填选项序号).
(2)NO被氣化为NO2,其他条件不变,NO的转化率与温度、压强的关系如图1所示,p1大于p2,温度高于
800℃时NO的转化率几乎为0的原因是温度大于800℃时,逆反应程度大,NO2几乎完全分解.
(3)温度升高,多数化学反应速率增大,但是2NO+O2?2NO2的化学反应速率却随温度的升高而减小.某化学小组为研究该特殊现象的实质原因,查阅资料知2NO(g)+O2(g)?2NO2(g)的反应历程分两步:
a、2NO(g)?N2O2(g)(快) v1正=k1正c2(NO) v1逆=k1逆c(N2O2)△H1<0
b、N2O2(g)+O2(g)?2NO2(g)(慢) v2正=k2正c(N2O2)c(O2) v2逆=k2逆c2(NO2)△H2<0
k1、k2为速率常数,温度升高,速率常数一般增大.
①决定2NO(g)+O2(g)?2NO2(g)速率的是反应是b,反应a的活化能E1,反应b的活化能E2,E1、E2的大小关系为E1小于E2(填“大于”、“小于”或“等于”).根据速率方程分析,升高温度该反应速率减小的原因是c.
a.k2正增大,c(N2O2)增大 b.k2正减小,c(N2O2)减小
c.k2正增大,c(N2O2)减小 d.k2正减小,c(N2O2)增大
②由实验数据得到v正~c(O2)的关系可用如图2表示.当x点升高到某一温度时,反应重新达到平衡,则变为相应的点为A(填字母).
(4)NH3催化还原氮氧化物(SCR)技术是目前应用最广泛的烟气氮氧化物脱除技术,在氮气足量的情况下,不同$\frac{c(N{O}_{2})}{c(NO)}$、不同温度对脱氮率的影响如图3所示(已知氮气催化还原氮氧化物的正反应为放热反应),则温度对脱氮率的影响是300℃之前,温度升高脱氮率逐渐增大,而300℃之后,温度升高脱氮率逐渐减小;300℃之前,反应未平衡,反应向右进行,脱氮率增大,给出合理的解释:300℃时反应达平衡,后升温平衡逆向移动,脱氮率减小.