题目内容
9.28.钛铁矿的主要成分为FeTiO3(可表示为FeO•TiO2),含有少量MgO、CaO、SiO2等杂质.利用钛铁矿制备锂离子电池电极材料(钛酸锂Li4Ti5O12和磷酸亚铁锂LiFePO4)的工业流程如图所示:
已知:FeTiO3与盐酸反应的离子方程式为:FeTiO3+4H++4Cl-═Fe2++TiOCl42-+2H2O
(1)化合物FeTiO3中铁元素的化合价是+2.
(2)滤渣A的成分是SiO2.
(3)滤液B中TiOCl42-和水反应转化生成TiO2的离子方程式是TiOCl42-+H2O=TiO2↓+2H++4Cl-.
(4)反应②中固体TiO2转化成(NH4)2Ti5O15溶液时,Ti元素的浸出率与反应温度的关系如图3所示.反应温度过高时,Ti元素浸出率下降的原因温度过高时,反应物氨水(或双氧水)受热易分解.
(5)反应③的化学方程式是(NH4)2Ti5O15+2 LiOH=Li2Ti5O15↓+2NH3•H2O(或2NH3+2H2O).
(6)由滤液D制备LiFePO4的过程中,所需 17%双氧水与H2C2O4的质量比是20:9.
(7)若采用钛酸锂(Li4Ti5O12)和磷酸亚铁锂(LiFePO4)作电极组成电池,其工作原理为:Li4Ti5O12+3LiFePO4 $?_{放电}^{充电}$ Li7Ti5O12+3FePO4 该电池充电时阳极反应式是:LiFePO4-e-=FePO4+Li+.
分析 铁矿石加入盐酸溶解过滤得到滤渣为二氧化硅,滤液B为MgCl2、CaCl2,FeCl2、TiOCl42-,加热促进水解,过滤得到彻底TiO2,加入过氧化氢和氨水反应得到(NH4)2Ti5O15,加入氢氧化锂溶液得到沉淀Li2Ti5O15加入碳酸锂煅烧得到钛酸锂Li4Ti5O12,滤液D加入过氧化氢氧化亚铁离子,加入磷酸得到沉淀磷酸铁,加入碳酸锂和草酸煅烧得到磷酸亚铁锂LiFePO4;
(1)根据反应FeTiO3+4H++4Cl-=Fe2++TiOCl42-+2H2O,不是氧化还原反应,可以判断铁元素化合价为+2价;
(2)MgO、CaO、SiO2等杂质中,二氧化硅不溶于稀盐酸,成为滤渣A;
(3)根据流程图示,TiOCl42-在溶液中加热与水反应生成二氧化钛沉淀;
(4)二氧化钛与氨水、双氧水反应生成NH4)2Ti5O15,温度过高,双氧水和氨水都容易分解;
(5)反应3是(NH4)2Ti5O15与强氧化锂反应生成Li2Ti5O15沉淀和氨水;
(6)根据电子守恒找出双氧水与草酸的关系式,然后列式计算计算出17%双氧水与H2C2O4的质量比;
(7)充电时按照电解槽进行分析,阳极氧化阴极还原,写出阳极放电的电解方程式即可.
解答 解:铁矿石加入盐酸溶解过滤得到滤渣为二氧化硅,滤液B为MgCl2、CaCl2,FeCl2、TiOCl42-,加热促进水解,过滤得到彻底TiO2,加入过氧化氢和氨水反应得到(NH4)2Ti5O15,加入氢氧化锂溶液得到沉淀Li2Ti5O15加入碳酸锂煅烧得到钛酸锂Li4Ti5O12,滤液D加入过氧化氢氧化亚铁离子,加入磷酸得到沉淀磷酸铁,加入碳酸锂和草酸煅烧得到磷酸亚铁锂LiFePO4;
(1)反应FeTiO3+4H++4Cl-=Fe2++TiOCl42-+2H2O中,不是氧化还原反应,可以判断铁元素化合价为+2价,
故答案为:+2;
(2)由于杂质中二氧化硅不溶于盐酸,所以滤渣A成分是二氧化硅,
故答案为:SiO2;
(3)根据流程可知,TiOCl42-在溶液中加热与水反应生成二氧化钛沉淀,反应的离子方程式为:TiOCl42-+H2O=TiO2↓+2H++4Cl-,
故答案为:TiOCl42-+H2O=TiO2↓+2H++4Cl-;
(4)由于二氧化钛与氨水、双氧水反应生成NH4)2Ti5O15时,温度过高,双氧水和氨水都容易分解,所以反应温度过高时,Ti元素浸出率下降,
故答案为:温度过高时,反应物氨水(或双氧水)受热易分解;
(5)根据流程图示可知,反应3是(NH4)2Ti5O15与氢氧化锂反应生成Li2Ti5O15沉淀和氨水,反应的化学方程式为:(NH4)2Ti5O15+2 LiOH=Li2Ti5O15↓+2NH3•H2O(或2NH3+2H2O),
故答案为:(NH4)2Ti5O15+2 LiOH=Li2Ti5O15↓+2NH3•H2O(或2NH3+2H2O);
(6)根据电子守恒,氧化铁元素转移的电子就等于铁离子氧化草酸转移的电子数,
因此可得关系式:H2O2~H2C2O4,设双氧水质量为x,草酸质量为y,
34 90
x×17% y
34y=90×x×17%,x:y=20:9,
17%双氧水与H2C2O4的质量比为20:9,
故答案为:20:9;
(7)充电时,阳极发生氧化反应,LiFePO4失去电子生成FePO4,电极反应为:LiFePO4-e-=FePO4+Li+,故答案为:LiFePO4-e-=FePO4+Li+.
点评 本题借助利用钛铁矿制备锂离子电池电极材料流程,考查了化合价判断、离子方程式书写等知识,本题难度中等,涉及的内容较多,综合性较强,充分考查了学生的综合能力,注意结合流程书写反应式.
| A. | 通入足量CO2后的溶液中:Na+、SiO32-、CH3COO-、CO32- | |
| B. | 无色溶液中:Mg2+、MnO4-、SO42-、K+ | |
| C. | 滴加紫色石蕊溶液显红色的溶液中:NH4+、Al3+、NO3-、Cl- | |
| D. | 与铝反应产生大量氢气的溶液:Na+、K+、SO42-、NO3- |
| 温度/℃ | 400 | 427 | 700 | 800 |
| 平衡常数 | 9.94 | 9 | b | 0.64 |
(1)上述正反应方向是放热反应(填“放热”或“吸热”).
(2)850℃时在体积为10L反应器中,通入一定量的CO和H2O(g)发生上述反应,CO和H2O(g)浓度变化如图1,则0~4min的平均反应速率v(CO)=0.03mol/(L•min)
t1℃时物质浓度(mol/L)的变化
| 时间(min) | CO | H2O | CO2 | H2 |
| 0 | 0.200 | 0.300 | 0 | 0 |
| 2 | 0.138 | 0.238 | 0.062 | 0.062 |
| 3 | c1 | c2 | c3 | c3[m] |
| 4 | c1 | c2 | c3 | c3 |
| 5 | 0.116 | 0.216 | 0.084 | |
| 6 | 0.096 | 0.266 | 0.104 |
(4)t1(℃高于850)℃时,在相同容器中发生上述反应,容器内各物质的浓度变化如表.
①表中3min~4min之间反应处于平衡状态;理由是反应在3min和4min时的各物质浓度相同.
②表中5min~6min之间数值发生变化,可能的原因是A(单选).
A.增加水蒸气 B.降低温度 C.使用催化剂 D.增加氢气浓度
(5)若在500℃时进行,若CO、H2O的起始浓度均为0.020mol/L,在该条件下,CO的最大转化率为75%.
(6)若在500℃时该反应达到了平衡状态,此时体系中的v-t图象如图2所示,若在t1时给体系适当升高温度,则v-t图象也会随之发生变化,请把v-t图补充画全(需标明正方向的反应速率和逆方向的反应速率).
| A. | Fe、Cu元素在白然界中主要以化合态形式存在 | |
| B. | CO在高温下能将Fe203还原为Fe | |
| C. | Fe与盐酸、Fe与Cl2发生反应均生成FeCl3 | |
| D. | 制作印刷电路板时,可用FeCl3溶液腐蚀Cu |
| A. | Fe与H2SO4溶液 | B. | Fe与FeCl3溶液 | C. | Fe与HCl溶液 | D. | Fe与CuSO4 溶液 |
| A. | 碘的萃取 | B. | 电解食盐水 | C. | 葡萄酿酒 | D. | 金属冶炼 |
| A. | c(H+)=1×10-13 mol•L-1的溶液中:Na+、Mg2+、I-、SO42- | |
| B. | 0.1mol•L-1的明矾溶液中:K+、NH4+、Cl-、HCO3- | |
| C. | pH=1的溶液中:Na+、NH4+、MnO4-、S2O32- | |
| D. | 无色透明的溶液中:Na+、Ba2+、Br-、NO3- |
| A. | 该分散系的分散质为Fe2O3 | |
| B. | 加入NaOH时发生的反应可能为:Fe2++2Fe3++8OH-═Fe3O4+4H2O | |
| C. | 在电场作用下,阴极附近分散系黑色变深,则说明该分散系带正电荷 | |
| D. | 可用过滤的方法将黑色金属氧化物与Na+分离开 |