题目内容
4.已知:某温度下,向容积为2L的恒容密闭容器中加入2mol X和2mol Y,发生反应X(g)+Y(g) 2Z(g).在1min时反应达到平衡,混合气体中Z的体积分数为50%.求:(1)该反应在前1min内X的平均速率.
(2)该温度下的平衡常数.
分析 运用化学平衡三段式列式计算,设反应的X物质的量为a
X(g)+Y(g)?2Z(g)
起始量(mol) 2 2 0
变化量(mol) a a 2a
平衡量(mol) 2-a 2-a 2a
在1min时反应达到平衡,混合气体中Z的体积分数为50%=$\frac{2a}{4}$,
a=1
(1)反应速率v=$\frac{△c}{△t}$;
(2)平衡常数K=$\frac{生成物平衡浓度幂次方乘积}{反应物平衡浓度幂次方乘积}$.
解答 解:设反应的X物质的量为a,
X(g)+Y(g)?2Z(g)
起始量(mol) 2 2 0
变化量(mol) a a 2a
平衡量(mol) 2-a 2-a 2a
在1min时反应达到平衡,混合气体中Z的体积分数为50%=$\frac{2a}{4}$,
a=1mol
(1)反应速率v=$\frac{△c}{△t}$=$\frac{\frac{1mol}{2L}}{1min}$=0.5mol/L•min,
答:该反应在前1min内X的平均速率0.5mol/L•min;
(2)平衡浓度为:c(X)=$\frac{(2-1)mol}{2L}$=0.5mol/L,c(Y)=$\frac{(2-1)mol}{2L}$=0.5mol/L,c(Z)=$\frac{2mol}{2L}$=1mol/L,平衡常数K=$\frac{生成物平衡浓度幂次方乘积}{反应物平衡浓度幂次方乘积}$=$\frac{{1}^{2}}{0.5×0.5}$=4,
答:该温度下的平衡常数为4.
点评 本题考查了化学平衡的计算应用,主要是三段式列式方法,平衡常数概念的计算,掌握基础是解题关键.题目较简单.
| A. | 等物质的量浓度的 NH4HSO4溶液和NaOH溶液等体积混合,溶液中各离子浓度大小关系为:c(Na+)=c(SO42-)>c(NH4+)>c(H+)>c(OH-) | |
| B. | 25℃时,将a mo1•L-l氨水与0.01 moI•L-1盐酸等体积混合,反应完全时溶液中c(NH4+)=c(C1-),用含a的代数式表示NH3•H2O的电离常数Kb=$\frac{1{0}^{-9}}{a-0.01}$ | |
| C. | ||
| D. | 已知298K时氢氰酸(HCN)的Ka=4.9×10-10、碳酸的Ka1=4.4×10-7,Ka2=4.7×10-11,据此可推测将氢氰酸加入到碳酸钠溶液中能观察到有气泡产生 |
| A. | 2 | B. | 4 | C. | 8 | D. | 16 |