题目内容

7.在如图所示的电路中,电源电压恒定,R1为一定值电阻,R2为滑动变阻器.开关S闭合后,当滑动变阻器的滑片P在a、b之间滑动的过程中,电压表的示数最大为3V,电阻R1的电功率变化范围是1.2W~0.3W,则当P在a与b两端时,通过R1的电流之比2:1,电源电压是6V.

分析 当滑片位于a端时,滑动变阻器接入电路中的电阻最小,电路中的电流最大,R1的功率最大;当滑片位于b端时,滑动变阻器接入电路中的电阻最大,电路中的电流最小,滑动变阻器两端的电压最大,R1的功率最小;根据P=I2R表示出R1的最大和最小电功率即可求出电流之比,根据电源的电压不变得出等式求出R1与滑动变阻器的最大阻值的关系,然后根据电阻的串联和欧姆定律求出电源的电压.

解答 解:当滑片位于a端时,滑动变阻器接入电路中的电阻最小,电路中的电流I1最大,R1的功率最大即P1=1.2W,
当滑片位于b端时,滑动变阻器接入电路中的电阻最大,电路中的电流I2最小,滑动变阻器两端的电压最大即U2=3V,R1的功率最小即P1′=0.3W,
由P=I2R可得,当P在a与b两端时,通过R1的电流之比:
$\frac{{P}_{1}}{{P}_{1}′}$=$\frac{{{I}_{1}}^{2}{R}_{1}}{{{I}_{2}}^{2}{R}_{1}}$=($\frac{{I}_{1}}{{I}_{2}}$)2=$\frac{1.2W}{0.3W}$=$\frac{4}{1}$,
解得:$\frac{{I}_{1}}{{I}_{2}}$=$\frac{2}{1}$;
因电源的电压一定时,电流和总电阻成反比,
所以,$\frac{{I}_{1}}{{I}_{2}}$=$\frac{{R}_{1}+{R}_{2}}{{R}_{1}}$=$\frac{2}{1}$,
解得:R2=R1
电源的电压:
U=I2(R1+R2)=I2(R1+R1)=2U2=2×3V=6V.
故答案为:2:1; 6V.

点评 本题考查了串联电路的特点和欧姆定律、电功率公式的应用,关键是R1最大和最小电功率的判断以及电源电压不变的利用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网