题目内容

18.如图所示,斜面长2m,高0.4m;将10N重的物体A从斜面底端匀速拉到斜面顶端,需要用平行于斜面的力3N,求:
(1)重物上升过程中克服摩擦做了多少额外功?
(2)斜面的摩擦力?
(3)斜面的机械效率是多少?

分析 (1)已知拉力F与斜面长,利用W=Fs计算总功;知道物体的重力和斜面的高度,根据W=Gh求出克服重力做的有用功;额外功等于总功与有功之差;
(2)利用W=Fs计算斜面的摩擦力;
(3)知道有用功和总功,根据机械效率公式求出机械效率.

解答 解:(1)拉力F做功:
W=Fs=3N×2m=6J;
对物体做的有用功:
W有用=Gh=10N×0.4m=4J;
额外功:
W=W-W有用=6J-4J=2J,
(2)根据W=Fs可得,斜面的摩擦力:
f=$\frac{{W}_{额}}{s}$=$\frac{2J}{2m}$=1N;
(3)斜面的机械效率:
η=$\frac{{W}_{有用}}{{W}_{总}}$×100%=$\frac{4J}{6J}$×100%≈66.7%.
答:(1)重物上升过程中克服摩擦做了2J额外功;
(2)斜面的摩擦力为1N;
(3)斜面的机械效率是66.7%.

点评 本题考查了学生对机械效率公式、有用功、总功、额外功的理解和运用,因条件已给出,难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网