题目内容
20.(1)金属桶的质量;
(2)金属桶所受的浮力;
(3)该村民从完全拉出水面开始到拉至洞口所做的功;
(4)计算该机械将桶拉出水面前和离开水面后的机械效率,并比较大小.
分析 (1)(2)利用m=ρV求桶中水的质量,再利用G=mg求水的重力;绳子与滑轮间的摩擦及绳重不计,桶露出水面前的拉力F1=$\frac{1}{3}$(G桶+G轮-F浮桶),桶完全露出水面后,拉力F2=$\frac{1}{3}$(G水+G桶+G轮),据此求出金属桶的重力、质量受到的浮力;
(3)由图知道村民从完全拉出水面开始到拉至洞口金属桶上升高度h,拉力端移动距离s=3h,知道拉力,利用W=Fs求拉力做功;
(4)拉出水面前,滑轮组下面受到的拉力等于金属桶重力减去金属桶受到的浮力;拉出水面后,滑轮组下面受到的拉力等于金属桶重力加上金属桶内水的重力,利用效率公式分别计算机械效率再比较大小.
解答 解:
(1)(2)桶中水的质量:
m=ρ水V水=1.0×103kg/m3×2×10-3m3=2kg;
桶中水的重力:
G水=mg=2kg×10N/kg=20N,
绳子与滑轮间的摩擦及绳重不计,桶露出水面前的拉力:
F1=$\frac{1}{3}$(G桶+G轮-F浮桶),
10N=$\frac{1}{3}$(G桶+10N-F浮桶),
可得:
G桶-F浮桶=20N,----①
桶完全露出水面后,拉力F2=$\frac{1}{3}$(G水+G桶+G轮),
20N=$\frac{1}{3}$(20N+G桶+10N),
可得:
G桶=30N,---②
金属桶的质量:
m=$\frac{{G}_{桶}}{g}$=$\frac{30N}{10N/kg}$=3kg,
由①②可得金属桶受到的浮力:
F浮桶=10N;
(3)该村民从完全拉出水面开始到拉至洞口,金属桶上升高度h=8m,
拉力端移动距离s=3h=3×8m=24m,
拉力F2=20N,
拉力做功:
W=F2s=20N×24m=480J;
(4)拉出水面前机械效率:
η1=$\frac{{W}_{有用1}}{{W}_{总1}}$=$\frac{{(G}_{桶}-{F}_{浮桶})h}{{F}_{1}s}$=$\frac{{G}_{桶}-{F}_{浮桶}}{3{F}_{1}}$=$\frac{30N-10N}{3×10N}$×100%≈66.7%,
拉出水面后机械效率:
η2=$\frac{{W}_{有用2}}{{W}_{总2}}$=$\frac{{G}_{桶}+{G}_{水}}{3{F}_{2}}$=$\frac{30N+20N}{3×20N}$×100%≈83.3%,
所以拉出水面后机械效率大.
答:(1)金属桶的质量为2kg;
(2)金属桶所受的浮力为10N;
(3)该村民从完全拉出水面开始到拉至洞口所做的功为480J;
(4)将桶拉出水面前和离开水面后的机械效率分别为66.7%、83.3%,拉出水面后机械效率大.
点评 本题为力学综合题,涉及到重力公式、密度公式、使用滑轮组拉力的计算方法、机械效率的计算;易错点在最后一问,注意将金属桶拉出水面前后滑轮组下面受到的拉力不同,导致机械效率不同.
第1次:把木块平放在长木板上,用弹簧测力计水平拉木块(如图1);
第2次:把木块侧放在长木板上,用同样的方法拉木块(如图2);
第3次:把两块相同木块叠在一起平放在长木板上,再用同样的方法拉木块(如图3),得到下列数据.
| 实验次数 | 木块对木板的压力/N | 弹簧测力计的示数/N | 滑动摩擦力/N |
| 1 | 20 | 4.0 | 4.0 |
| 2 | 20 | 4.0 | 4.0 |
| 3 | 40 | 8.0 | 8.0 |
(2)比较1、2两次实验数据,可以发现滑动摩擦力的大小与接触面积的大小无关.
(3)如图4所示,若将A、B紧靠着放在水平桌面上,用水平力F推A使它们一起匀速运动,则推力F=8N.
| A. | 电磁铁 | B. | 力F的力臂 | C. | 光的反射 | D. | 平面镜成像 |
| A. | 用手摸镜片时,中间薄边缘厚的是近视镜 | |
| B. | 拿着镜片看字,把字放大的是老花镜 | |
| C. | 让镜片正对太阳光,在镜片另一侧能呈现一个大光斑的是近视镜 | |
| D. | 让镜片正对太阳光,在镜片另一侧能呈现一个明亮小光斑的是近视镜 |
| A. | 食用油吸热升温快,说明食用油吸热能力较强 | |
| B. | 物体吸热多少是由构成它的物质种类决定的 | |
| C. | 加热相同的时间,末温低的物体吸热能力强 | |
| D. | 将食用油和水加热到相同的温度时,它们吸收的热量相同 |