题目内容

11.甲、乙两个物体,分别在水平拉力作用下在水平面上作匀速直线运动.若甲所受的重力是乙的3倍,甲受的水平拉力是乙受的水平拉力的2倍,甲的运动速度是乙的运动速度的1倍,则拉力对甲乙两物体做功之比和所用时间之比可能是(  )
A.1:1   2:1B.2:1   1:1C.3:2    2:3D.3:2   3:2

分析 由题知两物体受到的拉力之、速度之比;先根据功的比值、W=Fs求出运动路程之比;再利用t=$\frac{s}{v}$求时间之比,看是否对应进行判断.

解答 解:
由题知两物体受到的拉力之比F:F=2:1,速度之比v:v=1:1,
A、若做功之比W:W=1:1,因为W=Fs,所以运动路程之比s:s=$\frac{{W}_{甲}}{{F}_{甲}}$:$\frac{{W}_{乙}}{{F}_{乙}}$=$\frac{1}{2}$:$\frac{1}{1}$=1:2;因为v=$\frac{s}{t}$,速度相同,所用时间与路程成正比t:t=s:s=1:2,故A不符合题意;
B、若做功之比W:W=2:1,因为W=Fs,所以运动路程之比s:s=$\frac{{W}_{甲}}{{F}_{甲}}$:$\frac{{W}_{乙}}{{F}_{乙}}$=$\frac{2}{2}$:$\frac{1}{1}$=1:1;因为v=$\frac{s}{t}$,速度相同,所用时间与路程成正比t:t=s:s=1:1,故B符合题意;
CD.若做功之比W:W=3:2,因为W=Fs,所以运动路程之比s:s=$\frac{{W}_{甲}}{{F}_{甲}}$:$\frac{{W}_{乙}}{{F}_{乙}}$=$\frac{3}{2}$:$\frac{2}{1}$=3:4;因为v=$\frac{s}{t}$,速度相同,所用时间与路程成正比t:t=s:s=4:3,故CD不符合题意.
故选B.

点评 本题考查了速度公式和功的公式的应用,注意利用假设法进行推导,看做功之比是否和时间之比是否对应.

练习册系列答案
相关题目
20.小明很善于思考,小明想:浮力是液体对物体向上的托力,而物体间力的作用是相互的,所以物体对液体一定有向下的压力,那么浮力的大小和物体对液体压力的大小有什么关系呢?
(1)如图所示,小明和小红利用烧杯、水、天平、合金圆柱体、细线和弹簧测力计,进行了如下探究:
①在烧杯中盛适量水,用天平测出烧杯和水的总质量m1
②用弹簧测力计测出圆柱体的重力G;
③如图所示,将圆柱体部分浸入烧杯的水中,静止在某一深度,记下弹簧测力计的示数F,则圆柱体所受水的浮力为G-F(用弹簧测力计所测得的量来表示);此时向天平的右盘加上适量的砝码,使天平重新平衡,记下天平的读数m2,则圆柱体对水的压力为(m2-m1)g(用天平所测得的量来表示).
(2)下表为小明和小红记录的实验数据:(表中h2>h1
圆柱的位置圆柱体的重力
G/N
弹簧测力计的示数F/N烧杯和水的总质量m1/g天平的读数m2/g
圆柱体部分浸入2.62.4180200
圆柱体浸没深度h12.62.2180220
圆柱体浸没深度h22.62.2180220
①通过分析表格中的数据,可以知道:圆柱体浸没在水中所受的浮力为0.4N,圆柱体对水的压力为0.4N.
②通过分析表格中的数据,可以得出:浮力的大小等于(选填“大于”、“小于”或“等于”)物体对液体压力的大小;此外他们还发现:物体浸没前浮力与浸入的深度有关.除此以外,你还能发现什么规律浸没在液体中的物体所受浮力的大小与所处的深度无关.
③由表格中的数据可知,该圆柱体的密度为6.5×103 kg/m3

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网