ÌâÄ¿ÄÚÈÝ
8£®Ò»¸öÄÜ×°Ë®100LµÄÌ«ÑôÄÜɹˮÏ䣬Æä½ÓÊÕÌ«ÑôÄܵÄÃæ»ýΪ2m2£¬¸ÃɹˮÏä½ÓÊܵÄÌ«Ñô·øÉäÄÜΪE=3.2¡Á106J¨M£¨h•m2 £©£®Ç󣺣¨1£©Èç¹ûÿÌì½ÓÊÕÌ«ÑôÄܵÄʱ¼äΪ8h£¬Ôò¸ÃɹˮÏäÿÌì¿ÉÒÔ½ÓÊÕ¶àÉÙ½¹µÄÌ«ÑôÄÜ£¿
£¨2£©ÓÉÓÚÈÈÁ¿µÄɢʧµÈÔÒò£¬Ë®µÄÎüÈÈЧÂÊÖ»ÓÐ60%£®ÄÇô£¬¸ÃɹˮÏäÒ»ÌìÎüÊÕµÄÌ«ÑôÄÜ¿ÉʹÕâ50LµÄË®´Ó20¡æÉý¸ßµ½¶àÉÙ¡æ
£¨3£©Çë˵³öÀûÓÃÌ«ÑôÄÜÈÈË®Æ÷µÄÓŵ㣮
·ÖÎö £¨1£©ÖªµÀÿÌì½ÓÊÕÌ«ÑôÄܵÄʱ¼äºÍ½ÓÊÕÌ«ÑôÄܵÄÃæ»ý£¬¸ù¾Ý½ÓÊÕÌ«ÑôÄÜEÇó³ö¸ÃɹˮÏäÿÌì¿ÉÒÔ½ÓÊÕµÄÌ«ÑôÄÜ£»
£¨2£©Ïȸù¾ÝÃܶȹ«Ê½Çó³öË®µÄÖÊÁ¿£¬ÔÚ¸ù¾ÝЧÂʹ«Ê½¦Ç=$\frac{{Q}_{Îü}}{{Q}_{×Ü}}$¡Á100%µÄ±äÐι«Ê½Çó³öË®ÎüÊÕµÄÈÈÁ¿£¬
È»ºó¸ù¾ÝQÎü=cm£¨t-t0£©µÄ±äÐι«Ê½t=t0+$\frac{{Q}_{Îü}}{cm}$Çó³öË®µÄĩΣ¬×¢ÒâÒª½áºÏ±ê×¼´óÆøÑ¹ÏÂË®µÄ·ÐµãΪ100¡æ½øÐÐÅжϼ´¿É£»
£¨3£©Ì«ÑôÄܵÄÌØµãÊÇÌ«ÑôÄÜÊ®·Ö¾Þ´ó£¬²úÉúÄÜÔ´×ÜÁ¿¶à£¬²¢ÇÒ¹©Ó¦Ê±¼ä³¤£¬·Ö²¼¹ãÀ«£¬»ñÈ¡·½±ã£¬°²È«Çå½à£¬²»»á¸ø»·¾³´øÀ´ÎÛȾ£»
µ«°ÑË®¼ÓÈȵ½Ô¤¶¨Î¶ÈÐèÒª½Ï³¤µÄʱ¼ä£¬²¢ÊÜÌìÆøÓ°ÏìµÄÖÆÔ¼£®
½â´ð ½â£º£¨1£©É¹Ë®ÏäÿÌì¿ÉÒÔ½ÓÊÕµÄÌ«ÑôÄÜ£º
Q×Ü=ESt=3.2¡Á106J¨M£¨h•m2£©¡Á2m2¡Á8h=5.12¡Á107J£»
£¨2£©Ë®µÄÌå»ýV=50L=50dm3=0.05m3£¬
ÓɦÑ=$\frac{m}{V}$µÃ£¬Ë®µÄÖÊÁ¿£º
m=¦ÑV=1.0¡Á103kg/m3¡Á0.05m3=50kg£»
ÓɦÇ=$\frac{{Q}_{Îü}}{{Q}_{×Ü}}$¡Á100%µÃ£¬Ë®ÎüÊÕµÄÈÈÁ¿£º
QÎü=¦ÇQ×Ü=60%¡Á5.12¡Á107J=3.072¡Á107J£¬
ÓÉQÎü=cm£¨t-t0£©µÃ£¬Ë®µÄĩΣº
t=t0+$\frac{{Q}_{Îü}}{cm}$=20¡æ+$\frac{3.072¡Á1{0}^{7}J}{4.2¡Á1{0}^{3}J£¨kg•¡æ£©¡Á50kg}$¡Ö166.3¡æ£¬
ÒòΪÔÚ1±ê×¼´óÆøÑ¹Ï£¬Ë®µÄ·ÐµãΪ100¡æ£¬
ÇÒ·ÐÌÚʱÎüÊÕÈÈÁ¿£¬Î¶ȱ£³Ö²»±ä£¬¹ÊË®µÄζÈÉý¸ßµ½100¡æ£®
£¨3£©Óŵ㣺½ÚÔ¼ÄÜÔ´¡¢ÎÞÎÛȾ¡¢¿ÉÔÙÉúµÈ£®
´ð£º£¨1£©¸ÃɹˮÏäÿÌì¿ÉÒÔ½ÓÊÕ5.12¡Á107½¹µÄÌ«ÑôÄÜ£»
£¨2£©¸ÃɹˮÏäÒ»ÌìÎüÊÕµÄÌ«ÑôÄÜ¿ÉʹÕâ50LµÄË®´Ó20¡æÉý¸ßµ½100¡æ£»
£¨3£©Óŵ㣺½ÚÔ¼ÄÜÔ´¡¢ÎÞÎÛȾ¡¢¿ÉÔÙÉúµÈ£®
µãÆÀ ±¾Ì⿼²éÁËѧÉú¶ÔÃܶȹ«Ê½¡¢ÎüÈȹ«Ê½µÄÀí½âÓëÕÆÎÕÒÔ¼°¶ÔÌ«ÑôÄÜÓÅȱµãµÄÈÏʶ£¬ÁªÏµÊµ¼ÊÉú»îÎÊÌ⣬°ÑÎïÀí֪ʶӦÓõ½Éú»îÖÐÈ¥£¬¶ÍÁ¶ÁËѧÉú½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£®
| A£® | ·Å´ó¾µ¾Û¹âʹֽƬ×Å»ð | B£® | ·´¸´ÍäÕÛºóÌúË¿µÄζÈÉý¸ß | ||
| C£® | ѹËõ¿ÕÆøÄÚÄÜÔö´ó | D£® | ¶¬Ìì»§Íâ´êÊÖȡů |
| A£® | B£® | C£® | D£® |
| A£® | ÔÚaµã»òeµãʱ£¬m=1£¬n=0 | B£® | ÔÚbµã»òdµãʱ£¬m=1£¬n=1 | ||
| C£® | ÔÚcµãʱ£¬m=2£¬n=2 | D£® | ÔÚfµãʱ£¬m=0£¬n=0 |
| A£® | º£Ì²ÉÏɹÑγØÃæ»ýºÜ´ó£¬³ØÄڵĺ£Ë®Ò²ºÜdz | |
| B£® | Ì«ÑôÄÜÈÈË®Æ÷Òª°²×°ÔÚÈÕ¹âÕÕÉä³ä×ãµÄµØ·½ | |
| C£® | ÔÚ³ÇÊÐÀïÖÖÖ²»¨Ä¾£¬À©´ó²ÝÆºÃæ»ý | |
| D£® | ²ÉÈ¡µØÄ¤¸²¸ÇµÄ·½·¨½øÐÐÓýÑí |
| ¹³ÂëÖØ£¨N£© | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
| Ö¸ÕëλÖã¨cm£© | 2 | 3 | 4 | 5 | 6 | 7 | 7.5 |
| µ¯»ÉÉ쳤£¨cm£© | 0 | 1 | 2 | 3 | 4 | 5 | 5.5 |
£¨2£©·ÖÎöÊý¾Ý£¬Äã¿ÉµÃ³öµÄ½áÂÛÊÇÔÚµ¯ÐÔÏÞ¶ÈÄÚ£¬µ¯»ÉµÄÉ쳤¸úÊܵ½µÄÀÁ¦³ÉÕý±È£»
£¨3£©¸Ãͬѧ×÷Á˵¯»ÉÊÜÁ¦Ó뵯»ÉÉ쳤³¤¶ÈµÄ¹ØÏµÍ¼£¬Èçͼ2Ëùʾ£®ÆäÖÐÕýÈ·µÄͼÏóÊÇb£»
£¨4£©·ÖÎö±í¸ñÊý¾Ý£¬ÔÚµ¯»É·¢Éúµ¯ÐÔÐαäµÄÏÞ¶ÈÄÚ£¬ËùÄܳÐÊܵÄ×î´óÀÁ¦ÊÇ2.5 N£®
| A£® | R=$\frac{¡÷U}{¡÷I}$ | B£® | R=$\frac{¡÷U}{{I}_{1}+{I}_{2}}$ | C£® | ¡÷P=¡÷U¡÷I | D£® | ¡÷P=¡÷U£¨I1+I2£© |