题目内容

2.如图所示是某建筑工地用吊车提升大理石板的示意图.已知大理石的密度是2.8×103kg/m3,每块大理石板的规格为50cm×50cm×2cm,升降机吊框的重力是600N.不计滑轮和钢丝绳的重力,不计摩擦,g取10N/kg.则:
(1)一块大理石板平放在水平地面上时对地面的压强;
(2)如果吊车钢丝绳能承受的最大拉力是10000N,则该吊车一次最多能匀速提升大理石板的块数;
(3)在某次提升作业中,吊车钢丝绳的拉动速度是0.1m/s,则在2min内吊车将大理石板提升的高度;
(4)由于师傅大意,吊起大理石才放下支撑柱(如图车轮前后),如果把整个吊车视为一个杠杆,那么在图示吊起重物的情形下,放下支撑柱后,吊车对地面的压强和吊车的重力G的力臂如何变化?

分析 (1)根据大理石的规格求出一块大理石的体积和底面积,根据密度公式求出大理石的质量,大理石对水平地面的压力和自身的重力相等,根据G=mg求出其大小,然后根据p=$\frac{F}{S}$求出对水平地面的压强;
(2)由图可知钢丝绳的有效股数为3,知道钢丝绳能承受的最大拉力,根据F=$\frac{1}{n}$(G+G吊框)求出该吊车一次最多能匀速提升的大理石板;
(3)根据v=nv可知大理石上升的速度,根据v=$\frac{s}{t}$求出在2min内吊车将大理石板提升的高度;
(4)①压强大小的影响因素是压力大小和受力面积大小;压力相同时,受力面积越大,压强越小;受力面积相同时,压力越大,压强越大;
②由于吊车的重心不变,重力作用线不变,要确定重力的力臂变化,关键是找出前后支点的变化.

解答 解:(1)每块大理石板的体积和底面积分别为:
V=50cm×50cm×2cm=5000cm3=5×10-3m3,S=50cm×50cm=2500cm2=0.25m2
由ρ=$\frac{m}{V}$可得,每块大理石的质量:
m=ρV=2.8×103kg/m3×5×10-3m3=14kg,
一块大理石板对水平地面的压力:
F=G=mg=14kg×10N/kg=140N,
一块大理石平放在水平地面上对地面的压强:
p=$\frac{F}{S}$=$\frac{140N}{0.25{m}^{2}}$=560Pa;
(2)由图可知,n=3,且F=10000N,
由F=$\frac{1}{n}$(G+G吊框)可得,升降机一次能提起的大理石块数:
N=$\frac{3F-{G}_{框}}{G}$=$\frac{3×10000N-600N}{140N}$=210块;
(3)由v=nv可得,大理石上升的速度:
v大理石=$\frac{{v}_{绳}}{n}$=$\frac{0.1m/s}{3}$=$\frac{1}{30}$m/s,
由v=$\frac{s}{t}$可得,在2min内吊车将大理石板提升的高度:
h=v大理石t=$\frac{1}{30}$m/s×2×60s=4m;
(4)①在前后两种情况下:整个设备的重力没有变化,即汽车对对地面的压力不变,而受力面积由于支撑柱的放下增大了,由此吊车对地面的压强减小了;
②如果把整个吊车视为一个杠杆,那么在图示吊起重物的情形下,支撑柱放下前,支点是汽车的最后面的车轮;支撑柱放下后,支点是汽车后面的支撑柱.由于支点的后移,所以吊车的重力G的力臂变大.
答:(1)一块大理石板平放在水平地面上时对地面的压强为560Pa;
(2)该吊车一次最多能匀速提升210块大理石板;
(3)在2min内吊车将大理石板提升的高度为4m;
(4)吊车对地面的压强减小,吊车的重力G的力臂变大.

点评 本题考查了密度公式、压强公式、重力公式、滑轮组拉力公式、速度公式的应用,关键是判断出大理石板平放时的底面积和得出钢丝绳的有效股数以及找出支柱放下前后支点的变化,计算过程要注意单位的换算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网