题目内容

将塑料球和泡沫球用细线相连放入水中时,泡沫球露出水面的体积为它自身体积的一半,如图所示.把细线剪断后,塑料球沉底,泡沫球露出水面的体积为自身体积的,已知塑料球与泡沫球的体积之比为1:8,则塑料球的密度为    kg/m3
【答案】分析:把细线剪断后,根据泡沫球露出水面的体积为自身体积的可知泡沫球排开水的体积,根据物体的漂浮条件和阿基米德原理求出泡沫球的密度,再根据漂浮条件和阿基米德原理表示出细线剪断前泡沫球、塑料球的重力之和与浮力之间的关系,然后利用密度公式即可求出塑料球的密度.
解答:解:把细线剪断后,泡沫球排开水的体积V=V泡沫-V泡沫=V泡沫
∵物体漂浮时受到的浮力和自身的重力相等,
∴根据F=ρgV和ρ=可得:
FgV=m泡沫g,即ρV泡沫泡沫V泡沫g,
解得:ρ泡沫=ρ
把细线剪断前,泡沫球和塑料球漂浮,则
F′=ρgV′=(m泡沫+m塑料)g,即ρg(V塑料+V泡沫)=(ρ泡沫V泡沫塑料V塑料)g,
∵V塑料:V泡沫=1:8,
∴ρ(V塑料+×8V塑料)=(ρ×8V塑料塑料V塑料),
整理可得:ρ塑料=3ρ=3×1×103kg/m3=3×103kg/m3
故答案为:3×103
点评:本题考查了物体漂浮的条件和阿基米德原理、密度公式的应用,关键是分清把细线剪断前后浮力和重力之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网