ÌâÄ¿ÄÚÈÝ
13£®¢ÙµçÔ´µçѹΪ5·ü£®
¢Ú»¬¶¯±ä×èÆ÷µÄ×î´ó×èֵΪ40Å·£®
¢ÛÌîдʵÑé±í¸ñ
| ʵÑéÐòºÅ | µçѹUx£¨·ü£© | µçÁ÷Ix£¨°²£© | µç×èRx£¨Å·£© | µç×èRxƽ¾ùÖµ£¨Å·£© |
| 1 | ||||
| 2 | 0.20 | |||
| 3 | ||||
·ÖÎö £¨1£©¸ù¾ÝʵÑéÖÐÒÆ¶¯±ä×èÆ÷µÄ»¬Æ¬£¬¹Û²ìµ½µçÁ÷±íµÄʾÊýÖð½¥Ôö´ó£¬¶øµçѹ±íµÄʾÊýʼÖÕ²»±ä£¬ÕâÒ»ÏÖÏó·ÖÎöÔÒò´Ó¶øµÃµ½µçÔ´µçѹ£»
£¨2£©ÓÉǰ´ÎʵÑéÓëÖØÐÂÕýÈ·Á¬½Óµç·£¬²Ù×÷²½ÖèÕýÈ·£¬±ÕºÏ¿ª¹ØÁ½±íʾÊýÏàͬ£»»¬Æ¬ÔÚÖеãʱµÄµçÁ÷£¬¸ù¾Ý´®ÁªµçÂ·ÌØµãºÍÅ·Ä·¶¨ÂɼÆË㻬¶¯±ä×èÆ÷µÄ×î´óÖµ£»
£¨3£©ÓÉ´®ÁªµçÂ·ÌØµãºÍÅ·Ä·¶¨ÂɼÆËãǰÁ½´ÎʵÑé±»²âµç×èÁ½¶Ëµçѹ£¬ÓÉͼ¶Á³öµÚÈý´ÎʵÑéÖеç±íʾÊý£¬½«ÊµÑéÊý¾ÝÌîÈë±í¸ñ£¬ÓÉR=$\frac{U}{I}$·Ö±ð¼ÆËãÈý´ÎRxµÄ×èÖµ£¬×îºó¼ÆËãÆäƽ¾ùÖµ£®
½â´ð ½â£º
¢ÙʵÑéÆ÷²ÄÆëÈ«ÇÒÍêºÃ£¬µçÔ´µçѹ±£³Ö²»±ä£®ÕýÈ·´®ÁªÊµÑéÆ÷²Ä£¬È»ºó½«µçѹ±í²¢ÁªÔÚµç·ÖУ¬Òƶ¯»¬Æ¬³öÏÖµçÁ÷±íµÄʾÊýÖð½¥Ôö´ó£¬¶øµçѹ±íµÄʾÊýʼÖÕ²»±ä£®ÓÉ´Ë˵Ã÷µç·ûÓжÏ·»ò¶Ï·³öÏÖ£¬ËùÒÔÔÒòÊǵçѹ±í²âµÄÊǵçÔ´µçѹ£¬ÓÉ´Ë¿ÉÖªµçÔ´µçѹΪ6V£»
¢ÚÖØÐÂÕýÈ·Á¬½Óµç·£¬²Ù×÷²½ÖèÕýÈ·£¬±ÕºÏ¿ª¹ØÁ½±íʾÊýÓëǰ´ÎʵÑéÏàͬ£¬´Ëʱ»¬¶¯±ä×èÆ÷µÄ»¬Æ¬Ó¦ÔÚ×î´óÖµ´¦£¬
ÓÉ´®ÁªµçÂ·ÌØµãºÍÅ·Ä·¶¨ÂɿɵãºU=I1£¨Rx+R»¬£©
¼´£º6V=0.12A¡Á£¨Rx+R»¬£©¡¢Ù
ÓÉͬÀíµ±»¬Æ¬ÔÚÖеãʱÓУº
6V=0.20A¡Á£¨Rx+$\frac{1}{2}$R»¬£©¡¢Ú
½â¢Ù¢Ú¿ÉµÃ£ºR»¬=40¦¸£»
¢ÛµÚÒ»´ÎʵÑéµç·ÖеçÁ÷I1=0.12A£¬
´ËʱRxÁ½¶Ëµçѹ£ºUx1=U-U»¬1=6V-0.12A¡Á40¦¸=1.2V£¬
´ËʱRx1=$\frac{{U}_{x1}}{{I}_{1}}$=$\frac{1.2V}{0.12A}$=10.0¦¸£»
µÚ¶þ´ÎʵÑ黬ƬÔÚÖе㣬µç·ÖеçÁ÷I2=0.2A£¬
´ËʱRxÁ½¶Ëµçѹ£ºUx2=U-U»¬2=6V-0.20A¡Á$\frac{1}{2}¡Á$40¦¸=2.0V£¬
´ËʱRx2=$\frac{{U}_{x2}}{{I}_{2}}$=$\frac{2.0V}{0.2A}$=10.0¦¸£»
ÓÉͼµÚÈý´ÎʵÑéÖУ¬µçѹ±íʹÓÃ0-3VÁ¿³Ì£¬·Ö¶ÈÖµ0.1V£¬¶ÁÊýΪ2.8V£»µçÁ÷±íʹÓÃ0-0.6AÁ¿³Ì£¬·Ö¶ÈÖµ0.02A£¬¶ÁÊýΪ0.28A£¬
´ËʱRx3=$\frac{{U}_{x3}}{{I}_{3}}$=$\frac{2.8V}{0.28A}$=10.0¦¸£»
ËùÒÔÈý´Î²âÁ¿µÄƽ¾ùÖµ£º
Rx=$\frac{{R}_{x1}+{R}_{x2}+{R}_{x3}}{3}$=$\frac{10.0¦¸+10.0¦¸+10.0¦¸}{3}$=10.0¦¸£®
| ʵÑéÐòºÅ | µçѹUx£¨·ü£© | µçÁ÷Ix£¨°²£© | µç×èRx£¨Å·£© | µç×èRxƽ¾ùÖµ£¨Å·£© |
| 1 | 1.2 | 0.12 | 10.0 | 10.0 |
| 2 | 2.0 | 0.20 | 10.0 | |
| 3 | 2.8 | 0.28 | 10.0 |
µãÆÀ ±¾ÌâÊDzâµç×èµÄʵÑ飬¿¼²éÁË´®ÁªµçÂ·ÌØµãºÍÅ·Ä·¶¨Âɹ«Ê½µÄÓ¦Óã¬ÕýÈ·Àí½âÌâÒ⣬Çó³öµçÔ´µçѹºÍ»¬¶¯±ä×èÆ÷µÄ×î´óÖµÊǹؼü£®
| A£® | ¢Ù¢Ü | B£® | ¢Ú¢Û | C£® | ¢Ù¢Û | D£® | ¢Ù¢Ú¢Û¢Ü |
| A£® | $\frac{p_1^3¦Ñ_ÒÒ^2+p_2^3¦Ñ_¼×^2}{p_2^2¦Ñ_¼×^2}$ | |
| B£® | $\frac{p_1^3¦Ñ_ÒÒ^2+p_2^3¦Ñ_¼×^2}{{{p_1}^2¦Ñ_¼×^2}}$ | |
| C£® | $\frac{p_1^3¦Ñ_¼×^2+p_2^3¦Ñ_ÒÒ^2}{p_1^2¦Ñ_ÒÒ^2}$ | |
| D£® | $\frac{p_1^3¦Ñ_¼×^2+p_2^3¦Ñ_ÒÒ^2}{p_2^2¦Ñ_ÒÒ^2}$ |
| A£® | F1£¾F2£¬G1£¾G2 | B£® | F1£¼F2£¬G1£¾G2 | C£® | F1£¼F2£¬G1£¼G2 | D£® | F1£¾F2£¬G1£¼G2 |
£¨1£©´Óϱí¼Ç¼ÖÐÄãÄܵõ½µÄ¹ØÓÚͬһֱÏßÉÏ·½ÏòÏà·´µÄ¶þÁ¦ºÏ³Éʱ£¬ºÏÁ¦Óë·ÖÁ¦µÄ´óС¹ØÏµÊÇF=F1-F2£»£¨ÓÃ×Öĸ±íʾ£©
£¨2£©ÊµÑéÖÐÓÃÒ»¸ö²âÁ¦¼ÆÀµ¯»Éʱ£¬ÈÔÒª½«µ¯»É´ÓAµãÀÉìµ½Oµã£¬ÕâÑù×öµÄÄ¿µÄÊÇΪÁ˱£Ö¤Ç°ºóÁ½´Îµ¯»ÉµÄÐαäÁ¿Ïàͬ£¬´Ó¶ø±£Ö¤Á¦µÄ×÷ÓÃЧ¹ûÏàͬ£®
| Ê©Á¦Çé¿ö | ´óС | ·½Ïò |
| ÓÃÁ½¸ö²âÁ¦¼Æ | F1=2.5N | ÏòÓÒ |
| F2=1N | Ïò×ó | |
| ÓÃÒ»¸ö²âÁ¦¼Æ | F=1.5N | ÏòÓÒ |