ÌâÄ¿ÄÚÈÝ
| k2G |
| k1(k1+k2) |
| k2G |
| k1(k1+k2) |
| k1G |
| k2(k1+k2) |
| k1G |
| k2(k1+k2) |
·ÖÎö£ºÒª½â¾ö´ËÌ⣬ÐèÒªÕÆÎÕºú¿Ë¶¨ÂÉ£¬ÖªµÀÔÚµ¯»ÉµÄµ¯ÐÔ·¶Î§ÄÚ£¬µ¯»ÉµÄÉ쳤ÓëËùÊܵÄѹÁ¦³ÉÕý±È£®Ê×Ïȸù¾ÝµÚÒ»´ÎµÄÇé¾°ÁгöÏàÓ¦µÄ¹ØÏµÊ½£¬µÃ³öG¡¢k1¡¢k2Ö®¼äµÄ¹ØÏµ£¬È»ºó¸ù¾ÝµÚ¶þÖÖÇé¿öÁгöÏàÓ¦µÄ¹ØÏµÊ½£¬ÆäÖÐÁ½µ¯»ÉÊÜÁ¦Ö®ºÍΪG£®ÁªÁ¢¹ØÏµÊ½¼´¿ÉÇó³ö£®
½â´ð£º½â£ºÉè¼×¡¢ÒÒÁ½¸ùµ¯»ÉµÄÔ³¤Îªx£¬y£®
µ±Á½¸öµ¯»Éͬʱ±»Îï¿éѹʱ£¬¼×Êܵ½µÄѹÁ¦ÎªG'£¬ÔòÒÒÊܵ½µÄѹÁ¦ÎªG-G'£®
¸ù¾ÝÌâÒ⣨Á½¸ùµ¯»ÉµÄ³¤¶ÈÕýºÃÏàµÈ£©Óɺú¿É¶¨Âɵãºx-
=y-
Ôòx-y=
-
¡¢Ù
x-
=y-
Ôòx-y=
-
¡¢Ú
ÓÉ¢Ù¢ÚÁ½Ê½µÃ£¬
-
=
-
½âµÃ£ºG¡ä=
ËùÒÔ¼×µ¯»ÉµÄ³¤¶ÈѹËõÁ¿x1=
=
ÒÒµ¯»ÉµÄ³¤¶ÈѹËõÁ¿x2=
=
¹Ê´ð°¸Îª£º
£»
£®
µ±Á½¸öµ¯»Éͬʱ±»Îï¿éѹʱ£¬¼×Êܵ½µÄѹÁ¦ÎªG'£¬ÔòÒÒÊܵ½µÄѹÁ¦ÎªG-G'£®
¸ù¾ÝÌâÒ⣨Á½¸ùµ¯»ÉµÄ³¤¶ÈÕýºÃÏàµÈ£©Óɺú¿É¶¨Âɵãºx-
| G |
| k1 |
| G |
| k2 |
Ôòx-y=
| G |
| k1 |
| G |
| k2 |
x-
| G¡ä |
| k1 |
| G-G¡ä |
| k2 |
Ôòx-y=
| G¡ä |
| k1 |
| G-G¡ä |
| k2 |
ÓÉ¢Ù¢ÚÁ½Ê½µÃ£¬
| G |
| k1 |
| G |
| k2 |
| G¡ä |
| k1 |
| G-G¡ä |
| k2 |
½âµÃ£ºG¡ä=
| k2G |
| k1+k2 |
ËùÒÔ¼×µ¯»ÉµÄ³¤¶ÈѹËõÁ¿x1=
| G¡ä |
| k1 |
| k2G |
| k1(k1+k2) |
ÒÒµ¯»ÉµÄ³¤¶ÈѹËõÁ¿x2=
| G-G¡ä |
| k2 |
| k1G |
| k2(k1+k2) |
¹Ê´ð°¸Îª£º
| k2G |
| k1(k1+k2) |
| k1G |
| k2(k1+k2) |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˵¯»ÉµÄÉ쳤ÓëÊÜÁ¦Ö®¼äµÄ¹ØÏµ£¬ÒªÕÆÎÕºú¿Ë¶¨ÂɵÄÄÚÈÝ£¬½â¾ö´ËÌâµÄ¹Ø¼üÊǸù¾Ý¸÷ÖÖÇé¾°ÁгöÏàÓ¦µÄ¹ØÏµÊ½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿