题目内容

10.某兴趣小组设计了如图所示电路,AB为裸导线,CD、EF是材料、粗细完全相同的均匀裸电阻丝,其电阻与长度成正比.AB、CD平行放置,并用导线与电流表、开关S1和电源相连,电源电压U=20V,EF垂直放置在AB、CD的中点间,且接触良好,CD=2EF,A、C两点间有开关S2.现只闭合开关S1,电流表示数I1=1A;若把EF从两中点间向左边移动一段距离后,电流表的示数为I2=$\frac{4}{5}$I1;若把EF从两中点间向右边移动一段距离后,电流表示数为I3=1.6I1.求:
  (1)在上述EF向左、向右移动过程中,电路总电阻的变化量大小△R、△R各为多少?
  (2)电流表示数为I2时,EF消耗的功率与电路消耗的总功率之比为多少?
  (3)把EF移动到B、D两点间,再闭合两开关,电路消耗的总功率为多少?

分析 (1)只闭合开关S1时,EF和DF段电阻串联,根据欧姆定律求出三种情况下电路中的总电阻,然后求出电路总电阻的变化量△R和△R的大小;
(2)根据电阻的串联结合EF在两中点间时电路的总电阻求出EF段的电阻,又知道电流表示数为I2时电路中的总P=I2R求出EF消耗的功率与电路消耗的总功率之比;
(3)把EF移动到B、D两点间,再闭合两开关时,EF段电阻和CD段电阻并联,根据并联电路的电压特点和P=$\frac{{U}^{2}}{R}$得出他们消耗的电功率,两者之和即为电路消耗的总功率.

解答 解:(1)根据欧姆定律可得:
EF垂直放置在AB、CD的中点间时电路中的电阻:R=$\frac{U}{{I}_{1}}$=$\frac{20V}{1A}$=20Ω,
把EF从两中点间向左边移动一段距离后电路中的总电阻:R=$\frac{U}{{I}_{2}}$=$\frac{U}{\frac{4}{5}{I}_{1}}$=$\frac{20V}{\frac{4}{5}×1A}$=25Ω,
把EF从两中点间向右边移动一段距离后电路中的总电阻:R=$\frac{U}{{I}_{3}}$=$\frac{U}{1.6{I}_{1}}$=$\frac{20V}{1.6×1A}$=12.5Ω,
△R=R-R=25Ω-20Ω=5Ω,△R=R-R=20Ω-12.5Ω=7.5Ω;
(2)设EF、CF、DF三段电阻丝的电阻为R,则EF垂直放置在AB、CD的中点间时电路中的电阻:
R=2R=20Ω,
解得:R=10Ω,
把EF从两中点间向左边移动一段距离后,电路中的总电阻:
R=25Ω,
因为串联电路中各处的电流相等,
所以根据P=I2R可得:
 PEF:P=I22R:I22×R=R:R=10Ω:25Ω=2:5;
(3)把EF移动到B、D两点间,再闭合两开关时,EF段电阻和CD段电阻并联,
并联电路中各支路两端的电压相等,
EF段电阻和CD段电阻消耗的电功率:
PEF=$\frac{{U}^{2}}{R}$=$\frac{{(20V)}^{2}}{10Ω}$=40W,
PCD=$\frac{{U}^{2}}{2R}$=$\frac{{(20V)}^{2}}{2×10Ω}$=20W,
电路消耗的总功率:
P=PEF+PCD=40W+20W=60W.
答:(1)在EF向左、向右移动过程中,电路总电阻的变化量大小△R为5Ω,△R为7.5Ω;
(2)电流表示数为I2时,EF消耗的功率与电路消耗的总功率之比为2:5;
(3)把EF移动到B、D两点间,再闭合两开关,电路消耗的总功率为60W.

点评 本题考查了串联电路和并联电路的特点以及欧姆定律、电功率公式的应用,分清EF移动时电路的连接方式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网