题目内容

7.把一重为4.9牛的空心金属球放入如图所示的液体中时,金属球漂浮在水面上,容器横截面积为100厘米3,则小球所受浮力为4.9牛;小球放入后,容器底部所受的压强增大了490帕.(假定小球放入容器后水不溢出)

分析 (1)利用物体的浮沉条件中,漂浮时F=G即可求出小球所受的浮力;
(2)求出了浮力,利用V=$\frac{{F}_{浮}}{{ρ}_{水}g}$求排开液体的体积;又知道容器横截面积,可以得到液面上升的高度,利用p=ρgh计算增加的压强.

解答 解:(1)由题知,金属球漂浮在液面上,则小球所受的浮力F=G=4.9N.
(2)由FgV可得,金属球排开液体的体积:
V=$\frac{{F}_{浮}}{{ρ}_{水}g}$=$\frac{4.9N}{{ρ}_{液}g}$.
液面上升的高度为:
△h=$\frac{{V}_{排}}{S}$=$\frac{4.9N}{{ρ}_{液}gS}$=$\frac{4.9N}{{ρ}_{液}g×1×1{0}^{-2}{m}^{2}}$,
液体对容器底的压强增加了:
△p=ρg△h=ρg×$\frac{4.9N}{{ρ}_{液}g×1×1{0}^{-2}{m}^{2}}$=490Pa.
故答案为:4.9;490.

点评 本题考查了学生对阿基米德原理和液体压强公式的掌握和运用,利用阿基米德原理求出排开水的体积是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网