搜索
我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,
若∠A=60°,∠DCB=∠EBC=
1
2
∠A.请你写出图中一个与∠A相等的角,并猜想图中哪个四边形是等对边四边形;
(3)在△ABC中,如果∠A是不等于60°的锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=
1
2
∠A.探究:满足上
述条件的图形中是否存在等对边四边形,并证明你的结论.
请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x
2
=5,解得x=
5
,由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
28、在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).
27、如图,△ABC中,AD平分∠BAC,BD=CD,求证:AB=AC.
如图,在Rt△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA到点
D,使AD=
1
2
AB.连接DE,DF.
(1)求证:AF与DE互相平分;
(2)若BC=4,求DF的长.
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).
(1)画出△ABC向下平移4个单位后得到的△A
1
B
1
C
1
;
(2)画出△ABC绕点O顺时针旋转90°后得到的△A
2
B
2
C
2
,并标出点M旋转后的对应点M′的位置.
(3)求出线段MM′的长度.
先化简,再求值:[(mn+1)(mn-2)-2m
2
n
2
+2]÷(-mn),其中m=
3
2
,n=-
2
3
.
22、分解因式:(1)(x-1)(x-2)-2(2-x)
2
(2)x
2
-y
2
-(x+y)
2
.
21、计算:(1)(2x+5)(5-2x)-(x-1)
2
(2)x
2
(x-1)-2x(x
2
-2x+3).
如图,已知△ABC的周长为1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,…,依此类推,则第10个三角形的周长为( )
A、
1
9
B、
1
10
C、
(
1
2
)
9
D、
(
1
2
)
10
0
68065
68073
68079
68083
68089
68091
68095
68101
68103
68109
68115
68119
68121
68125
68131
68133
68139
68143
68145
68149
68151
68155
68157
68159
68160
68161
68163
68164
68165
68167
68169
68173
68175
68179
68181
68185
68191
68193
68199
68203
68205
68209
68215
68221
68223
68229
68233
68235
68241
68245
68251
68259
366461
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案