【题目】如图,是的边的垂直平分线,垂足为点,与的延长线交于点,连接,,,与交于点,则下列结论:
①四边形是菱形;
②;
③;
④四边形
以上四个结论中所有正确的结论是( )
A.①②B.①②③C.②④D.①②④
【题目】如图,在平面直角坐标系中,点为坐标原点,将含30°角的放在第一象限,其中30°角的对边长为1,斜边的端点,分别在轴的正半轴,轴的正半轴上滑动,连接,则线段的长的最大值是( )
A.2B.C.D.
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE延长线于F,连接CF.
(1)求证:四边形ADCF是菱形;
(2)在不添加任何辅助线的情况下,请直接写出与△ACD面积相等的三角形(不包含△ACD).
【题目】某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.
(1)求该商贩第一批购进水果每箱多少元;
(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?
【题目】已知:点A,B,C都在⊙O上,连接AB,AC,点D,E分别在AC,AB上,连接CE并延长交⊙O于点F,连接BD,BF,∠BDC﹣∠BFC=2∠ABF.
(1)如图1,求证:∠ABD=2∠ACF;
(2)如图2,CE交BD于点G,过点G作GM⊥AC于点M,若AM=MD,求证:AE=GD;
(3)如图3,在(2)的条件下,当AE:BE=8:7时,连接DE,且∠ADE=30°.延长BD交⊙O于点H,连接AH,AH=8,求⊙O的半径.
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=.
(1)求b的值;
(2)点C以每秒1个单位长度的速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=∠FEH,求t的值.
【题目】某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.
(1)把折线统计图补充完整;
(2)求出扇形统计图中,公务员部分对应的圆心角的度数;
(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是“教师”的概率.
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上.将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过的区域的面积.
【题目】如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.