【题目】数学问题:计算(其中m,n都是正整数,且m2,n1).

探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.

探究一:计算

1次分割,把正方形的面积二等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续二等分,…;

n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

探究二:计算++++

1次分割,把正方形的面积三等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续三等分,…;

n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

两边同除以2,得++++=

探究三:计算++++

(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算++++

(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)

根据第n次分割图可得等式:_________

所以, ++++=________

拓广应用:计算 ++++

 0  357135  357143  357149  357153  357159  357161  357165  357171  357173  357179  357185  357189  357191  357195  357201  357203  357209  357213  357215  357219  357221  357225  357227  357229  357230  357231  357233  357234  357235  357237  357239  357243  357245  357249  357251  357255  357261  357263  357269  357273  357275  357279  357285  357291  357293  357299  357303  357305  357311  357315  357321  357329  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网