【题目】如图,设 A 是由n×n 个有理数组成的n 行n 列的数表, 其中aij ( i,j =1,2,3,,n )表示位于第i 行第 j 列的数,且aij 取值为 1 或-1.
a | a | a | |
a | a | a | |
a | a | a |
对于数表 A 给出如下定义:记 xi 为数表 A 的第i 行各数之积,y j 为数表 A 的第 j 列各数之积.令S = (x1+ x2++ x
)+(y1+ y2+ y
),将S 称为数表 A 的“积和”.
(1)当n = 4 时,对如下数表 A,求该数表的“积和” S 的值;
1 | 1 | -1 | -1 |
1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 |
-1 | -1 | 1 | 1 |
(2)是否存在一个 3×3 的数表 A,使得该数表的“积和” S =0 ?并说明理由;
(3)当n =10 时,直接写出数表 A 的“积和” S 的所有可能的取值.