【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。
(1)若∠ACD=114°,求∠MAB的度数;
(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。
【题目】如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.
(1)求证:D是BC的中点;
(2)若DE=3,BD-AD=2,求⊙O的半径.
【题目】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?
【题目】如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若CD=2,AB=8,求半径的长.
【题目】如图,抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),顶点为D.
(1)求此抛物线的解析式;
(2)求此抛物线顶点D的坐标和对称轴.
【题目】如图,AD为∠BAC的平分线,添下列条件后,不能证明△ABD≌△ACD的是( )
A. B. C. D.
【题目】如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有_____对.
【题目】如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为( )
A. 4cm B. 6cm C. 8cm D. 10cm
【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.
【题目】小华要买一种标价为5元的练习本,学校旁边有甲、乙两个文具店正在做促销活动,甲商店的优惠条件是:一次性购买超过10本,则超过的部分按标价的销售;乙商店的优惠条件是:活动期间所有文具按标价的销售;
(1)现小华要买20本练习本,他若选择甲商店,需花元______,他若选择乙商店,需花______元.
(2)若小华现有120元钱,他最多可买多少本练习本?
(3)试分析小华如果要买本练习本时,到哪个商店购买较省钱?