【题目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
【题目】如图,有3本和6本七年级上册的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:
(1)当讲台上整齐叠放的七年级上册数学课本数为本时,请写出这摞课本距离地面的最大高度(用含的式子表示);
(2)若从桌面上整齐叠放成一摞的60本七年级上册数学课本中取走18本,求余下的一摞课本距离地面的最大高度.
【题目】△ABC中,∠A,∠B,∠C的对边分别记为,,,由下列条件不能判定△ABC为直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
【题目】如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化.
(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)
(2)求出当a=10,b=12时的绿化面积.
【题目】(1)某校举办秋季运动会,七(1)班和七(2)班进行拔河比赛,比赛规定标志物红绸向某班方向移动或以上,该班就获胜.红绸先向(2)班移动,后又向(1)班移动,相持几秒后,红绸向(2)班移动,随后又向(1)班移动,在一片欢呼声中,红绸再向(1)班移动,裁判员一声哨响,比赛结束,请你用计算的方法说明最终获胜的是几班;
(2)已知、互为相反数,、互为倒数,的绝对值为2,求的值.
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价(元/件)之间存在一次函数关系,求y关于的函数关系式(不需要写出函数自变量的取值范围);
(2)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?
(3)为保证产品在实际试销中销售量不得低于30件,且工厂获得得利润不得低于400元,请直接写出单价的取值范围;
【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)
【题目】【问题原型】如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF,DE.试说明:DE=EF.
【探究】如图2,在问题原型的条件下,当AC平分∠BAD,∠DEF=90°时,求∠BAD的大小.
【应用】如图3,在问题原型的条件下,当AB=2,且四边形CDEF是菱形时,直接写出四边形ABCD的面积.
【题目】如图1,已知直线与坐标轴交于两点,与直线交于点,且点的横坐标是纵坐标的倍.
(1)求的值.
(2)为线段上一点,轴于点,交于点,若,求点坐标.
(3)如图2,为点右侧轴上的一动点,以为直角顶点,为腰在第一象限内作等腰直角,连接并延长交轴于点,当点运动时,点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.
【题目】某景区的三个景点A、B、C在同一线路上.甲、乙两名游客从景点A出发,甲步行到景点C;乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C,甲、乙两人同时到达景点C.甲、乙两人距景点A的路程y(米)与甲出发的时间x(分)之间的函数图象如图所示.
(1)乙步行的速度为_ __米/分.
(2)求乙乘景区观光车时y与x之间的函数关系式.
(3)甲出发多长时间与乙第一次相遇?