【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;①AD平分∠BAC;③AE=AD;④AB+AC=2AE.其中正确的有( ).
A.1个B.2个C.3个D.4个
【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
【题目】如图,在半径为R的⊙O中,和度数分别为36°和108°,弦CD与弦AB长度的差为(用含有R的代数式表示).
A. R B. C. 2R D. 3R
【题目】如图,直角三角形AOB中,O为坐标原点,∠AOB=90°,∠B=30°,若点A在反比例函数y= (x>0)图像上运动,那么点B必在函数( )的图像上运动.
A B. C. D
【题目】如图,ΔABC中,AB=AC,∠A=40O,延长AC到D,使CD=BC,点P是ΔABD的内心,则∠BPC=
A. 105° B. 110° C. 130° D. 145°
【题目】如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是( )
A. BM>DN B. BM<DN C. BM=DN D. 无法确定
【题目】在数轴上,点分别表示数,且,动点从点出发,以每秒个单位长度的速度沿数轴向右运动,点始终为线段的中点,设点运动的时间为秒.则:
在点运动过程中,用含的式子表示点在数轴上所表示的数.
当时,点在数轴上对应的数是什么?
设点始终为线段的中点,某同学发现,当点运动到点右侧时,线段长度始终不变.请你判断该同学的说法是否正确,并加以证明.
【题目】已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.
(1)当点B坐标为(0,1)时,求点C的坐标;
(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.
【题目】如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是-2.
(1)求这条直线的解析式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
①图2中的阴影部分的面积为 ;
②观察图2请你写出 (a+b)2、(a﹣b)2、ab之间的等量关系是 ;
③根据(2)中的结论,若x+y=5,xy=,则(x﹣y)2= ;
④实际上通过计算图形的面积可以探求相应的等式.
如图3,你发现的等式是 .