【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。
【题目】观察算式:
;
按规律填空
(1)+++=______;
(2)++++…+=________;
(3)如果n为正整数,那么
++++…+=______;
(4)由此拓展写出具体过程:
+++…+=______.
【题目】已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.
【题目】某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,规定岗亭为原点,向北为正,这段时间行驶记录如下(单位:千米) +10,-9,+7,-15,+6,-14,+4,-2
(1)最后停留的地方在岗亭的哪个方向?距离岗亭多远?
(2)若摩托车行驶,每千米耗油0.06升,每升6.2元,且最后返回岗亭,这一天耗油共需多少元?
【题目】数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,也体现了“数形结合”的数学思想.如图,数轴上的点、、、、分别表示、、0、2.5、6,请利用数轴解决下列问题:
(1)数轴上,、两点之间的距离是 ,、两点之间的距离是 ,到点的距离是3个单位长度的点所表示的数是 .
(2)如果将点向左移动7个单位长度,再向右移动5个单位长度,请同学们在数轴上画出点移动的路线图,并指出终点所表示的数.
(3)如果点是数轴上的另一点,将点向右移动3个单位长度,再向左移动5个单位长度,终点表示的数是,那么点表示的数是 .
【题目】在平面坐标系中,已知线段,且的坐标分别为,点为线段的中点.
(1)线段与轴的位置关系是
(2)求点的坐标。
(3)在轴上是否存在点,使得三角形面积为3.若存在,求出点的坐标;若不存在,请说明理由.
【题目】如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?
【题目】绿水青山就是金山银山,国家倡导全民植树。在今年3月12日植树节当天,某校七年级一班48名学生全部参加了植树活动,男生每人栽种4株,女生每人栽种3株,全班共栽种170株。
(1)该班男、女生各为多少人?
(2)学校选择购买甲、乙两种树苗,甲树苗 ,乙树苗 .如果要使购买树苗的钱不超过1200元,那么最多可以购买甲树苗多少株?
【题目】用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.
(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.
(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.
【题目】已知:如图,抛物线y=﹣x2+bx+C经过点B(0,3)和点A(3,0)
(1)求该抛物线的函数表达式和直线AB的函数表达式;
(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.