【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究由数思形,以形助数的方法在解决代数问题中的应用.

探究一:求不等式|x1|2的解集

1)探究|x1|的几何意义

如图①,在以O为原点的数轴上,设点A对应的数是x1,有绝对值的定义可知,点A与点O的距离为

|x1|,可记为AO=|x1|.将线段AO向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=AO,所以AB=|x1|,因此,|x1|的几何意义可以理解为数轴上x所对应的点A1所对应的点B之间的距离AB

2)求方程|x1|=2的解

因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1

3)求不等式|x1|2的解集

因为|x1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请写出这个解集:_________________________________

探究二:探究的几何意义

1)探究的几何意义

如图③,在直角坐标系中,设点M的坐标为(xy),过MMPx轴于P,作MQy轴于Q,则P点坐标为(x0),Q点坐标为(0y),OP=|x|OQ=|y|,在RtOPM中,PM=OQ=|y|,则,因此,的几何意义可以理解为点Mxy)与点O00)之间的距离MO

2)探究的几何意义

如图④,在直角坐标系中,设点A的坐标为(x1y5),由探究二(1)可知,,将线段AO先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(xy),点B的坐标为(15),因为AB=AO,所以,因此的几何意义可以理解为点Axy)与点B15)之间的距离AB

3)探究的几何意义,根据探究二(2)所得的结论,请写出的几何意义可以理解为:________________

4的几何意义可以理解为:________________________________

 0  353773  353781  353787  353791  353797  353799  353803  353809  353811  353817  353823  353827  353829  353833  353839  353841  353847  353851  353853  353857  353859  353863  353865  353867  353868  353869  353871  353872  353873  353875  353877  353881  353883  353887  353889  353893  353899  353901  353907  353911  353913  353917  353923  353929  353931  353937  353941  353943  353949  353953  353959  353967  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网