【题目】如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).
(1)求证:AF∥CE;
(2)当t为何值时,四边形EHFG为菱形;
(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.
【题目】如图,在平面直角坐标系中.直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A,连结AC,A(-1,0)
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;
(3)若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.
【题目】如图,在△ABC中,∠C=900,,,且,若当时,代数式的值最小,且最小值为b.
(1)求 ,的值.(2)求△ABC的面积 .
【题目】如图,△ABC为等腰三角形,AB=AC,AB>BC,∠1=∠2≠90°,∠1+∠BAC=180°,点A、F、E、D在一条直线上,点D在BC边上,CD=2BD.若△ABC的面积为40,求△ABE与△CDF的面积之和________
【题目】阅读下列解题过程:
===-2;
==.
请回答下列问题:
(1)观察上面的解题过程,请直接写出式子= ;
(2)观察上面的解题过程,请直接写出式子= ;
(3)利用上面所提供的解法,请求+···+的值.
【题目】如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.
(1)求证:四边形DECO是矩形;
(2)连接AE交BD于点F,当∠ADB=30°,DE=2时,求AF的长度.
【题目】某超市经销一种销售成本为每件60元的商品,据市场调查发现,如果按每件70元销售,一周能售出500件,若销售单价每涨1元,每周销售就减少10件,设销售价为每件x元(x≥70),一周的销售量为y件.
(1)当销售价为每件80元时,一周能销售多少件?答:_____________件.
(2)写出y与x的函数关系式,并写出x的取值范围.
(3)设一周的销售利润为w,写出w与x的函数关系式.
(4)在超市对该种商品投入不超过18000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?
【题目】如图△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,使C与点O恰好重合,则∠OEB=_______
【题目】如图①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.
【题目】 今年6月份,我市某果农收获荔枝30吨,香蕉13吨.现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可将荔枝4吨和香蕉1吨,乙种货车可将荔枝和香蕉各2吨.
(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来?
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输1300元,则该果农应选择哪能种方案才能使运输费最少?最少动费是多少?