【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;

(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.

【答案】30°

【解析】(1)连结OC,如图,由于∠A=OCA,则根据三角形外角性质得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根据平行线的判定得到OCBD,再CEBD得到OCCE,然后根据切线的判定定理得CF为⊙O的切线;
(2)根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.

答:

(1)证明:连结OC,如图,

OA=OC

∴∠A=OCA

∴∠BOC=A+OCA=2A

∵∠ABD=2BAC

∴∠ABD=BOC

OCBD

CEBD

OCCE

CF为⊙O的切线;

(2)当∠CAB的度数为30°时,四边形ACFD是菱形,理由如下

∵∠A=30°,

∴∠COF=60°,

∴∠F=30°,

∴∠A=F

AC=CF

连接AD

AB是⊙O的直径,

ADBD

ADCF

∴∠DAF=F=30°,

ACBADB,

∴△ACB≌△ADB

AD=AC

AD=CF

ADCF

∴四边形ACFD是菱形。

故答案为:30°.

型】解答
束】
22

【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

(1)求出y与x的函数关系式

(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?

(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

 0  353231  353239  353245  353249  353255  353257  353261  353267  353269  353275  353281  353285  353287  353291  353297  353299  353305  353309  353311  353315  353317  353321  353323  353325  353326  353327  353329  353330  353331  353333  353335  353339  353341  353345  353347  353351  353357  353359  353365  353369  353371  353375  353381  353387  353389  353395  353399  353401  353407  353411  353417  353425  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网