【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

【答案】(1)△AHO的周长为12(2) 反比例函数的解析式为y=一次函数的解析式为y=-x+1.

【解析】试题分析: 1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;

2)根据待定系数法,可得函数解析式.

试题解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5

△AHO的周长=AO+AH+OH=3+4+5=12

2)将A点坐标代入y=k≠0),得

k=-4×3=-12

反比例函数的解析式为y=

y=-2时,-2=,解得x=6,即B6-2).

AB点坐标代入y=ax+b,得

解得

一次函数的解析式为y=-x+1

考点:反比例函数与一次函数的交点问题.

型】解答
束】
23

【题目】如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)

 0  353115  353123  353129  353133  353139  353141  353145  353151  353153  353159  353165  353169  353171  353175  353181  353183  353189  353193  353195  353199  353201  353205  353207  353209  353210  353211  353213  353214  353215  353217  353219  353223  353225  353229  353231  353235  353241  353243  353249  353253  353255  353259  353265  353271  353273  353279  353283  353285  353291  353295  353301  353309  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网