题目内容
【题目】【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=
(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=
,点B的坐标为(m,-2).
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.
![]()
【答案】(1)△AHO的周长为12;(2) 反比例函数的解析式为y=
,一次函数的解析式为y=-
x+1.
【解析】试题分析: (1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;
(2)根据待定系数法,可得函数解析式.
试题解析:(1)由OH=3,tan∠AOH=
,得
AH=4.即A(-4,3).
由勾股定理,得
AO=
=5,
△AHO的周长=AO+AH+OH=3+4+5=12;
(2)将A点坐标代入y=
(k≠0),得
k=-4×3=-12,
反比例函数的解析式为y=
;
当y=-2时,-2=
,解得x=6,即B(6,-2).
将A、B点坐标代入y=ax+b,得
,
解得
,
一次函数的解析式为y=-
x+1.
练习册系列答案
相关题目
【题目】
观察下图并填表(单位
)
![]()
梯形个数 |
|
|
|
|
|
|
| n |
图形周长 |
|
|
| ······ |
请通过计算说明第
个图形的周长比第
个图形的周长多多少
?
类比推理,直角三角形的三边长分别是
,请直接写出增加到第
个直角三角形时,所得图形的周长为 .
![]()