(本小题满分8分)
如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(),正六边形的边长为()cm(其中),求这两段铁丝的总长
如图,在半径为4的⊙O中,弦AB长为4.
(1)求圆心O到弦AB的距离;
(2)若点C为⊙O上一点(不与点A,B重合),求∠ACB的度数.
(6分)如图,已知在△ABC中,∠A=90°,
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).
(2)若∠B=60°,AB=3,求⊙P的面积.
已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.
(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(2)若△ABC是正三角形,试求这个一元二次方程的根.
已知关于x的一元二次方程x2+(2m-1)x+m2﹣4=0
(1)当m为何值时,方程有两个不相等的实数根?
(2)若边长为的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
某校八年级学生小阳,小杰和小凡到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为10元/千克,下面是他们在活动结束后的对话.
小阳:如果以12元/千克的价格销售,那么每天可售出300千克.
小杰:如果以15元/千克的价格销售,那么每天可获取利润750元.
小凡:我通过调查验证发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?
如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径是2cm,E是弧AD的中点,求阴影部分的面积(结果保留π和根号)
如图,已知点A、B分别在x轴、y轴上,AB=12,∠OAB=30°,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.
(1)直接写出A、B点坐标是A点 ,B点 ;(2)用含t的代数式求出表示点P的坐标;(3)过O作OC⊥l于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并写出此时⊙P与直线CD的位置关系.
下列所给的各组线段,能组成三角形的是 ( )
A. B.
C. D.
下面四个图形中,线段BE是⊿ABC的高的图是( )