已知,如图,点A为⊙O上的一点.
(1)用没有刻度的直尺和圆规作一个⊙O的内接正三角形ABC.(保留作图痕迹并标出B、C);
(2)若⊙O半径为10,则三角形ABC的面积为 .
某水果批发商以40元/千克的成本价购入了某种水果700千克,据市场预测,该水果的销售价y(元/千克)与保存时间x(天)的函数关系为y=50+2x,但保存这批产品平均每天将损耗15千克,且最多保存10天.另外,批发商每天保存该批产品的费用为50元.
(1)若批发商在保存该产品5天后一次性卖出,则销售价格是 ,则可获利 元.
(2)如果水果批发商希望通过这批产品卖出获利9880元,则批发商应在保存该产品多少天后一次性卖出?
如图1.在△ABC中,∠ACB=90°,AC=BC=,以B为圆心、1为半径作圆,设点P为⊙B上一点,线段CP绕着点C顺时针旋转90°,得到线段CD,连接DA、PD、PB.
(1)求证:AD=BP;
(2)若DP与⊙B相切,则∠CPB的度数为 ;
(3)如图2,当B、P、D三点在同一条直线上时,求BD的长;
(4)BD的最小值为 ;BD的最大值为 .
如图,已知正方形ABCD边长为1,点P是射线AD的上的一个动点,点A关于直线BP的对称点是点Q,设AP=x.
(1)求当D,Q,B三点在同一直线上时对应的x的值.
(2)当△CDQ为等腰三角形时,求x的值.
如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示).
(2)若以AD为直径的圆经过点C.
①求a的值.
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段BF=2MF,求点M、N的坐标.
③如图3,点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.
方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为( )
A. 3、2、5 B. 2、3、5 C. 2、﹣3、﹣5 D. ﹣2、3、5
如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )
A. 1 B. C. 2 D.
一元二次方程x2–6x–6=0配方后化为( )
A. (x–3)2=15 B. (x–3)2=3
C. (x+3)2=15 D. (x+3)2=3
根据下表可知,方程x2+3x﹣5=0的一个近似解x为( )
x
1
1.1
1.2
1.3
1.4
x2+3x﹣5
﹣1
﹣0.49
0.04
0.59
1.16
A. 1.1 B. 1.2 C. 1.3 D. 1.4
在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )
A. 若AD⊥BC,则四边形AEDF是矩形
B. 若AD垂直平分BC,则四边形AEDF是矩形
C. 若BD=CD,则四边形AEDF是菱形
D. 若AD平分∠BAC,则四边形AEDF是菱形