已知直线y1=2x-4与双曲线y2= (k>0)在第一象限内交于点P(6,8),则当时,自变量x的取值范围是_____________.
菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点E坐标为(0,﹣),点P是对角线OC上一个动点,则EP+BP最短的最短距离为_____.
如图①,在△AOB中,∠AOB=90º,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为____________.
已知关于x的方程x2+2mx-(m+1)=0,若两根倒数的和比两根倒数的积小1,求m的值.
为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现在随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果绘制了如下两幅不完整的统计图.
请根据以上信息回答下列问题:
(1)本次调查的样本容量是 ,并补全条形统计图; (2)若该学校共有3600名学生,试估计该校最想去森林公园的学生人数;
(3)从选项为“D(森林公园)”的学生中抽取了小明和小军两人做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁选择的数,谁就获胜;若小军选择的数是5,用列表或画树状图的方法求他获胜的概率.
如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.
(1)求证:AD是半圆O的切线;(2)连接CD,求证:∠A=2∠CDE;(3)若∠CDE=27°,OB=2,求弧BD的长.
小明同学要测量公园内被湖水隔开的两颗大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°的方向.
(1)求∠ABC的度数;
(2)求两棵大树A和B之间的距离(结果精确到1米;参考数据, , ).
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
在ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.
(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.
①求证:BE=BF;
②请判断△AGC的形状,并说明理由.
(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)
如图,在平面直角坐标系中,O是坐标原点,直线与x轴,y轴分别交于B,C两点,抛物线经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.
(1)求抛物线的解析式及点A的坐标;
(2)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒个单位长度的速度向点A运动,运动时间和点P相同.
①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?
②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.