(2013秋•崇州市校级期末)已知在△ABC中,∠BAC=90°;分别以AB,BC为边作正方形ABDE和正方形BCFG,连接DC,GA交于点P,求证:PD⊥PG.
(2015秋•南郑县校级月考)如图所示,一艘渔船正以30海里/时的速度由西向东追赶鱼群,自A处经半小时到达B处,在A处看见小岛C在船的北偏东60°的方向上,在B处看见小岛C在船的北偏东30°的方向上,已知以小岛C为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,则这艘船继续向东追赶鱼群,是否有进入危险区域的可能?
(2012•绵阳)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.
(2015秋•南郑县校级月考)在一次课外活动中,李聪、何花、王军三位同学准备跳绳,他们约定用“抛硬币”的游戏方式来确定哪两位同学先用绳(如图1).
(1)请将如图2表示游戏一个回合所有可能出现结果的树状图补充完整;
(2)求一个回合能确定两位同学先用绳的概率.
(2013•株洲)已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
(2015秋•南郑县校级月考)如图是一个实心几何体的三视图,求该几何体的体积.(结果保留π,单位:cm)
(2012秋•东港市校级期末)如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼的前面16米处要盖一栋高20米的新楼,在冬至日清晨阳光的照射下,1米高的小树的影子长为1.6米.
(1)问超市以上的居民住房采光是否受到影响?为什么?
(2)若要使超市以上的居民住房采光不受影响,两楼应相距多少米?
(2015秋•南郑县校级月考)已知关于x的一次函数y1=kx+1与反比例函数y2=的图象交于A(2,m)、B两点.
(1)求一次函数的表达式及点B的坐标;
(2)在同一坐标系中画出这两个函数的图象;
(3)求△AOB的面积;
(4)观察图象,当x在什么范围内时,y1>y2.
(2010•东莞)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
(2015秋•绵阳月考)下列方程为一元二次方程的是( )
A.x+=1 B.ax2+bx+c=0 C.x(x﹣1)=x D.x+