(8分)(2015黄石)如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A到最高点B的距离为,A,B两点正前方有垂直于地面的旗杆DE.在A,B两点处用仪器测量旗杆顶端E的仰角分别为60°和15°(仰角即视线与水平线的夹角)
(1)求AE的长;
(2)已知旗杆上有一面旗在离地1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?
(8分)(2015黄石)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).
(1)直接写出y与x之间的函数关系式;
(2)如何确定销售价格才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元应如何控制销售价格?
(9分)(2015黄石)在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.
(10分)(2015黄石)已知双曲线(),直线:(k<0)过定点F且与双曲线交于A,B两点,设A(,),B(,)(),直线:.
(1)若,求△OAB的面积S;
(2)若AB=,求k的值;
(3)设N(0,),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(,),B(,)则A,B两点间的距离为AB=.
下列各数中,比-2大的数是( )
A.-3 B.0 C.-2 D.-2.1
若非零实数x,y满足4y=3x,则x:y等于( )
A.3:4 B.4:3 C.2:3 D.3:2
温州市测得某一周PM2.5的日均值(单位:微克/立方米)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是( )
A.50和50 B.50和40 C.40和50 D.40和40
计算:正确的结果是( )
A. B. C. D.
抛物线的顶点坐标是( )
A.(-2,-3) B.(2,3) C.(-2,3) D.(2,-3)
由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是( )
A.主视图的面积最大 B.左视图的面积最大
C.俯视图的面积最大 D.三个视图的面积一样大