【倾听理解】在一次数学活动课上,两个同学利用计算机软件探索函数问题,下面是他们交流的片断:
小韩:如图①,若直线x=m(m>0)分别交x轴、直线y=x和y=2x于点P、M、N时,有=1.
小苏:如图②,若直线x=m(m>0)分别交x轴,曲线y=(x>0)和y=(x>0)于点P、M、N时,有==…
【问题解决】(1)填空:图②中,小苏发现的=_______;
(2)若记图①,图②中MN为d1、d2,分别求出d1、d2与m之间的函数关系式,并指出函数的增减性;
(3)如图③,直线x=m(m>0)分别交x轴、抛物线y=x2-4x和y=x2-3x于点P、M、N,设B、A为抛物线y=x2-4x、y=x2-3x与x轴的非原点交点,当m为何值时,线段OP、PM、PN、MN中有三条能围成等边三角形?并直接写出此时点A、B、M、N围成的图形面积.
操作与证明:如图①,把一个含45°角的直角三角板ECF和一个
正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点
C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF的
中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是_______;
结论2:DIM、MN的位置关系是_______;
拓展与探究:
(3)如图②,将图①中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
某消毒液工厂,去年5月份以前,每天的产量与销售量均为500箱,进入5月份后,每天的产量保持不变,市场需求量不断增加,如图是5月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图像.(5月份以30天计算)
(1)该厂_______月份开始出现供不应求的现象,5月份的平均日销售量为_______箱;
(2)为满足市场需求,该厂打算在投资不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于5月份的平均日销售量,现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:
请设计一种购买设备的方案,使得日产量最大;
(3)在(2)的条件下(市场日平均需求量与5月份相同),若安装设备需5天(6月6日新设备开始生产),指出何时开始该厂有库存.
如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AE=8,⊙O的半径为5,求DE的长.
如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1)求证:CF=BD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并证明你的结论.
校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21 m,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(精确到0.1 m,参考数据:≈1.73,≈1.41);
(2)已知本路段对校车限速为40 km/h,若测得某辆校车从A到B用时2s,这辆校车是否超速?请说明理由.
某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,一共抽查了_______名学生;
(2)请将上面两幅统计图补充完整;
(3)图①中,“踢毽”部分所对应的圆心角为_______°;
(4)如果全校有1860名学生,请问:全校学生中,最喜欢“球类”活动的学生约有多少人?
班主任老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.
(1)小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有_______个,白球应有_______个;
(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球,和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.
先化简,再求值:,其中a是方程x2+3x+1=0的根.
解不等式组:
①
②