如图,一次函数y1=ax+b的图象与反比例函数
的图象交于A,B两点,已知OA=
,tan∠AOC=
,点B的坐标为(
,m),连接OB.
(1)求反比例函数的解析式和一次函数的解析式;
(2)求△AOB的面积.
(1)求反比例函数的解析式和一次函数的解析式;
(2)求△AOB的面积.
某中学初三年级一、二班优秀学生的情况分布如表:
其中,一班的进步学生人数是该班优秀干部人数的2倍,二班的积极分子人数是该班优秀干部人数与进步学生人数之和.
(1)求出表中x、y的值,并补全下列统计图;
(2)若每位三好学生计5分、优秀干部计4分、积极分子计3分、进步学生计2分,请分别用各班优秀学生得分的平均数和众数说明哪个班的得分较高?
(3)若一班的三好学生中有一位男生,二班的进步学生中有三位女生.现要从一班的三好学生和二班的进步学生中各任意选出1 人去参加学校的表彰会,请你用画树状图或列表的方法,求出刚好选到一位男生和一位女生的概率.
| 三好学生人数 | 优秀干部人数 | 积极分子人数 | 进步学生人数 | |
| 一班 | 2 | 3 | 4 | x |
| 二班 | 3 | 1 | y | 4 |
(1)求出表中x、y的值,并补全下列统计图;
(2)若每位三好学生计5分、优秀干部计4分、积极分子计3分、进步学生计2分,请分别用各班优秀学生得分的平均数和众数说明哪个班的得分较高?
(3)若一班的三好学生中有一位男生,二班的进步学生中有三位女生.现要从一班的三好学生和二班的进步学生中各任意选出1 人去参加学校的表彰会,请你用画树状图或列表的方法,求出刚好选到一位男生和一位女生的概率.
在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识,某企业采用技术革新,节能减排,今年前5个月二氧化碳排放量y(吨)与月份x(月)之间的关系如下表:

(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数关系能表示y和x的变化规律,请写出y与x的函数关系式;
(2)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么今年哪月份,该企业获得的月利润最大?最大月利润是多少万元?
(3)受国家政策的鼓励,该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位)(参考数据:
,
,
,
)
0 157282 157290 157296 157300 157306 157308 157312 157318 157320 157326 157332 157336 157338 157342 157348 157350 157356 157360 157362 157366 157368 157372 157374 157376 157377 157378 157380 157381 157382 157384 157386 157390 157392 157396 157398 157402 157408 157410 157416 157420 157422 157426 157432 157438 157440 157446 157450 157452 157458 157462 157468 157476 366461
| 月份x(月) | 1 | 2 | 3 | 4 | 5 | … |
| 二氧化碳排放量y(吨) | 48 | 46 | 44 | 42 | 40 | … |
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数关系能表示y和x的变化规律,请写出y与x的函数关系式;
(2)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么今年哪月份,该企业获得的月利润最大?最大月利润是多少万元?
(3)受国家政策的鼓励,该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位)(参考数据: