某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶,每级小台阶都为0.4米.现要做一个不锈钢的扶手AB及两根与FG垂直且长均为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且.(1)求点D与点C的高度差DH的长度;(2)求所用不锈钢材料的总长度(即AD+AB+BC).(结果精确到0.1米.参考数据:,,)
已知:如图,在Rt△中,,.点为边上一点,且,.求△周长和.(结果保留根号)
某人从楼顶看地面、两点,测得它们的俯角分别是和.已知,、、在同一直线上,求楼高.(精确到,参考数据:,)
如图,小山岗的斜坡的坡度是,在与山脚距离米的处,测得山顶的仰角为,求小山岗的高(结果取整数:参考数据:,,).
如图,西园中学数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点的仰角为,再沿着的方向后退20m至处,测得古塔顶端点的仰角为,求该古塔BD的高度(,结果保留一位小数).
如图,在四边形ABCD中,∠DAB=60º,AC平分∠DAB,BC⊥AC,AC与BD交于点E,AD=6,CE=,,求BC、DE的长及四边形ABCD的面积.
如图是某货站传送货物的平面示意图,AD与地面的夹角为60°,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°变成37°,因此传送带的落地点由点B到点C向前移动了2米.(1)求点A与地面的高度;(2)如果需要在货物着地点C的左侧留出2米,那么请判断距离D点14米的货物2是否需要挪走,并说明理由.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)
如图,A点、B点分别表示小岛码头、海岸码头的位置,离B点正东方向的7.00km处有一海岸瞭望塔C,又用经纬仪测出:A点分别在B点的北偏东57°处、在C点的东北方向.(1)试求出小岛码头A点到海岸线BC的距离;(2)有一观光客轮K从B至A方向沿直线航行:①某瞭望员在C处发现,客轮K刚好在正北方向的D处,试求出客轮驶出的距离BD的长;②当客轮航行至E处时,发现E点在C的北偏东27°处,请求出E点到C点的距离; (注:tan33°≈0.65,sin33°≈0.54,cos33°≈0.84,结果精确到0.01km)
飞机测量一岛屿两端A、B的距离,在距海平面垂直高度为200m的点C处测得A的俯角为53°,然后沿着平行于AB的方向水平飞行了300m,在点D处测得B的俯角为45°,求岛屿两端A、B的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)
已知:如图,四边形ABCD,AB=8,BC=6,CD=26,AD=24,且AB⊥BC。求:四边形ABCD的面积。