如图,在⊙O中,弦CD垂直于直径AB于点F,OF=3,CD=8,M是OC的中点,AM的延长线交⊙O于点E,DE与BC交于点N,(1)求AB的长;(2)求证:BN=CN.
如图,点A在x轴负半轴上,点B在y轴正半轴上,线段AB长为6,将线段AB绕A点顺时针旋转60°,B点恰好落在x轴上点D处,点C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标;(2)如图②,若半径为1的⊙P从点A出发,沿A—B—D—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒1个单位长的速度匀速增加,当运动到点C时运动停止,运动时间为t秒,试问在整个运动过程中⊙P与y轴有公共点的时间共有几秒?(3)在(2)的条件下,当⊙P在BD上运动时,过点C向⊙P作一条切线,t为何值时,切线长有最小值,最小值为多少?
在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,O为AB上一点,OA=,以O为圆心,OA为半径作圆.(1)试判断⊙O与BC的位置关系,并说明理由;(2)若⊙O与AC交于另一点D,求CD的长.
某街道两旁正在安装漂亮的路灯,经查看路灯图纸,小红发现该路灯的设计可以看作是“相切两圆”的一部分,部分数据如图所示:⊙O1、⊙O2相切于点C,CD切⊙O1于点C,A、B为路灯灯泡.已知∠AO1O2=∠BO2O1=60°. A、B、C三点距地面MN的距离分别为,请根据以上图文信息,求:(1)⊙O1、⊙O2的半径分别多少cm;(2)把A、B两个灯泡看作两个点,求线段AB的长.
如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE//CD,交AC的延长线于点E,连接BC.(1)求证:BE为⊙O的切线; (2)若CD=6,tan∠BCD=,求⊙O的直径.
如图:等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接A、O1、B、O2.(1)求证:四边形AO1BO2是菱形;(2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2DO2;(3)在(2)的条件下,若,求的值.
已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.
某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别相切于A、B,∠CO2D=60°,直线O1O2与⊙O1、扇形O2CD分别交于E、F两个点,EF=24cm,设⊙O1的半径为xcm,(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06/cm2元,当⊙O1的半径为多少时,该玩具成本最小?
已知如图,在平面直角坐标系中,是过格点A,B,C的圆弧,请完成下列问题:(1)用无刻度的直尺,过点B作与相切的直线l. 并写出 所在的圆的圆心P坐标;(2)设切线l与x轴相交于点D,求切线DB的长度.
(1)如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.求证:∠AEB=∠CFB. (2)如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C, PA=8cm,PB=4cm,求⊙O的半径.