如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.
(1)如图1,OA、OB是⊙O的半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连结AD交DC于点E.则CD=CE吗?如成立,试说明理由。(2)若将图中的半径OB所在直线向上平行移动交OA于F,交⊙O于B’,其他条件不变,如图2,那么上述结论CD=CE还成立吗?为什么?(3)若将图中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变,如图3,那么上述结论CD=CE还成立吗?为什么图 1 图 2 图 3
如图,AB是⊙O的直径,以OA为直径的⊙与⊙O的弦AC相交于点D,DE⊥OC,垂足为E.(1)求证:AD=DC(2)DE是⊙的切线吗?说明理由.
已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为4cm的⊙O,它的内Rt△ABC的斜边AB恰好等于⊙O的直径,它的外Rt△A′B′C′的直角边A′C′ 恰好与⊙O相切(如图2)。思考:(1) 求直角三角尺边框的宽。(2) 求BB′C′+CC′B′的度数。(3) 求边B′C′的长。
已知,如图,在R t△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和)
如图,在△ABC 中,BA=BC,以AB为直径作半圆⊙O,交AC于点D.连结DB,过点D 作DE⊥BC,垂足为点E.(1)求证:AD = CD;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:DB2 = AB·BE.
如图,点是半圆的半径上的动点,作于.点是半圆上位于左侧的点,连结交线段于,且. (1)求证:是⊙O的切线.(2)若⊙O的半径为,,设.①求关于的函数关系式.②当时,求的值.
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.
如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.(1)判断直线CD是否为⊙O的切线,请说明理由;(2)若CD="3" ,求BC的长.