如图,在矩形ABCD中,点O在对角线AC上,以 OA长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)求证:CE是⊙O的切线; (2)若tan∠ACB=,AE=7,求⊙O的直径.
如图,在平面直角坐标系中,坐标原点为,点坐标为,点坐标为,以的中点为圆心,为直径作⊙P与轴的正半轴交于点.(1)求经过三点的抛物线对应的函数表达式.(2)设为(1)中抛物线的顶点,求直线对应的函数表达式.(3)试说明直线与⊙P的位置关系,并证明你的结论.
已知:如图,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC于点E.(1) 求证:DE是⊙O的切线;(2)如果⊙O的半径为2,sin∠B=,求BC的长.
如图,是⊙O的一条弦,,垂足为,交⊙O于点,点在⊙O上.(1)若,求的度数;(2)若,,求的长
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED="4. " (1)求证: ~;(2) 求的值; (3)延长BC至F,连接FD,使的面积等于,求的度数.
在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D,求线段AD的长度.
已知:如图,AB是⊙O的直径,CD是⊙O的弦, 且AB⊥CD,垂足为E,联结OC, OC=5.(1)若CD=8,求BE的长;(2)若∠AOC=150°, 求扇形OAC的面积.
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是的切线,连接OQ. 求的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被截得的弦长
如图一,AB是的直径,AC是弦,直线EF和相切与点C,,垂足为D.(1)求证;(2)如图二,若把直线EF向上移动,使得EF与相交于G,C两点(点C在点G的右侧),连结AC,AG,若题中其他条件不变,这时图中是否存在与相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.
如图,为正方形对角线AC上一点,以为圆心,长为半径的⊙与相切于点.(1)求证:与⊙相切;(2)若⊙的半径为1,求正方形的边长.