【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.

【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④错误.

【解答】在菱形ABCD中,∵AB=BD,

∴AB=BD=AD,

∴△ABD是等边三角形,

∴根据菱形的性质可得∠BDF=∠C=60°,

∵BE=CF,

∴BC-BE=CD-CF,

即CE=DF,

在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,

∴△BDF≌△DCE(SAS),故①小题正确;

∴∠DBF=∠EDC,

∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,

∴∠BMD=180°-∠DMF=180°-60°=120°,故②小题正确;

∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,

∴∠DEB=∠ABM,

又∵AD∥BC,

∴∠ADH=∠DEB,

∴∠ADH=∠ABM,

在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,

∴△ABM≌△ADH(SAS),

∴AH=AM,∠BAM=∠DAH,

∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,

∴△AMH是等边三角形,故③小题正确;

∵△ABM≌△ADH,

∴△AMH的面积等于四边形ABMD的面积,

又∵△AMH的面积=AM·AM=AM2

∴S四边形ABMDAM2,S四边形ABCD≠S四边形ABMD,故④小题错误,

综上所述,正确的是①②③共3个.

故选C.

【点评】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,题目较为复杂,特别是图形的识别有难度,从图形中准确确定出全等三角形并找出全等的条件是解题的关键.

 0  113716  113724  113730  113734  113740  113742  113746  113752  113754  113760  113766  113770  113772  113776  113782  113784  113790  113794  113796  113800  113802  113806  113808  113810  113811  113812  113814  113815  113816  113818  113820  113824  113826  113830  113832  113836  113842  113844  113850  113854  113856  113860  113866  113872  113874  113880  113884  113886  113892  113896  113902  113910  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网