题目内容
如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=
AC,连接OA,OB,BD和AD.
(1)若点A的坐标是(﹣4,4)
①求b,c的值;
②试判断四边形AOBD的形状,并说明理由;
(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存
在,请说明理由.
![]()
解:(1)
①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)
把A、C代入y═﹣x2+bx+c得, 得
,解得
;
②四边形AOBD是平行四边形;理由如下:
由①得抛物线的解析式为y═﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),
过D点作DE⊥AB于点E,则DE=OC=4,AE=2,
∵AC=4,∴BC=
AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,
∴△AED≌△BCO,∴AD=BO.∠DAE=∠BCO,∴AD∥BO,
∴四边形AOBD是平行四边形.
(2)存在,点A的坐标可以是(﹣2
,2)或(2
,2)
要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,
∵∠ABO=∠OBC,∴△ABO∽△OBC,∴
=
,
又∵AB=AC+BC=3BC,∴OB=
BC,
∴在Rt△OBC中,根据勾股定理可得:OC=
BC,AC=
OC,
∵C点是抛物线与y轴交点,∴OC=c,
∴A点
坐标为(
c,c),∴顶点横坐标
=
c,b=
c,
∵将A点代入可得c=﹣
+
c•
c+c,
∴横坐标为±
c,纵坐标为c即可,令c=2,
∴A点坐标可以为(2
,2)或者(﹣2
,2).
练习册系列答案
相关题目